Лекция №5 бета-излучение

Область применения

Основной областью применения рассматриваемого вида излучения является медицина. Речь идет о радиоизотопной диагностике и лечении некоторых заболеваний.

Практическое использование осуществляется:

  1. В терапевтических целях. На пораженные области накладывают аппликации, излучающие нужные для лечения частицы.
  2. Для устранения злокачественных новообразований. Терапия может быть внутритканевой или внутриполостной (источник излучения вводится в пораженный опухолью орган). Выделяющиеся при радиационном распаде электроны отрицательно воздействуют на процессы деления раковых клеток.
  3. В диагностических целях. Метод основывается на накоплении радиоактивных изотопов в опухолевых тканях. Такое исследование помогает выявить мельчайшие злокачественные новообразования.

Бета-излучение применяется и в химической промышленности, например в контроле протекающих автоматически процессов. Облучение используется при ремонте транспортной и строительной техники, ведении археологических раскопок. Применение лучей помогает установить точный возраст горной породы.

Гамма и рентгеновские лучи

Рентгеновское и гамма-излучение похожи по характеристикам, но отличаются источником. На более высоких частотах гамма-лучи сильнее проникают и несут больше разрушений живой ткани. Их также применяют в области медицины для терапии рака.

В последние десятилетия подход к их отличию резко изменился. Ранее использовался критерий длины волны, где показатель ниже 10-11 м автоматически относил волну к гамма. Но искусственным источникам удалось воспроизводить это явление и при глубоком изучении приняли решение отличать их по источнику происхождения. Гамма создаются ядром, а рентгеновские – электронами вне ядра.

Исключения встречаются в астрономии, где гамма-распад способен возникнуть при послесвечении сверхновых и прочих процессов с высокими энергиями, которые не связаны с радиоактивным распадом. Наиболее яркий пример – длительные гамма-всплески, чей механизм генерации не сходится с радиоактивным распадом. Они связаны с крушением звезд – гиперновые.

Это снимок неба в 100 МэВ, сделанный на прибор EGRET космического корабля CGRO. Яркие пятна – пульсары (вращающиеся нейтронные звезды с мощными магнитными полями). Ниже и выше плоскости – квазары (галактики со сверхмассивными черными дырами)

Понятие

Ученый Э. Резерфорд решил провести эксперимент и поместил излучатель радиации в магнитное поле. В результате произошло разделение потока на три разные части – альфа, бета, гамма излучения.

При проведении более подробных опытов ученому удалось определить, что же на самом деле представляет из себя альфа излучение. Частицы по своим параметрам были полностью идентичны атомам элемента гелия. Разница состоит в том, что эти частицы имеют положительный заряд, то есть у них отсутствуют оба электрона.

Альфа и бета излучение относятся корпускулярному испусканию. При этом они выходят из ядра со скоростью примерно равной двадцати тысячам километров в секунду. В результате возникает довольно сильная ионизация, которая приводит к изменению структуры вещества и его химических свойств.

Какие характеристики применимы для такого вида излучения? Чем оно отличается от других?

Характеристика:

  • Вес частиц составляет примерно 4,0015 атомных единицы,
  • Энергия таких лучей находится в диапазоне от 4 до 9 МэВ.
  • Низкая проникающая способность – это главная особенность альфа излучения.
  • Путь таких лучей равен расстоянию от источника до той точки, в которой их движение затухает. В воздушной среде длина пути может достигать одиннадцати сантиметров, а в более плотных средах  она совсем минимальна.

Сильная ионизация атомов становится причиной того, что альфа частицы очень быстро теряют свою энергию. В итоге они не могут проникнуть даже через верхний слой кожных покровов. В этом случае риск радиационного излучения минимален.

Однако если такой вид излучения будет получен при использовании ускорителя, то ситуация меняется на противоположную. Происходит быстрый распад α-частиц и образование радионуклидов, представляющих довольно высокую опасность для человека. Даже микроскопической дозы хватит для возникновения лучевой болезни.

Какой спектр имеет альфа излучение? Дело в том, что в его спектре содержится очень мало частиц, способных преодолевать слишком длинное или, наоборот, короткое расстояние. Именно поэтому такое излучение является монохромным, в отличие от бета или гамма.

Откуда появляются альфа частицы? Происхождение данных элементов может быть как искусственным, так и натуральным.

Источники:

  • При ядерном распаде некоторых тяжелых элементов происходит высвобождение атомов гелия. Например, радий или торий.
  • Космическое происхождение обусловлено движением таких частиц под воздействием земного притяжения.
  • Возможно образование альфа излучения при проведении каких-либо опытов в лабораторных условиях.
  • Промышленные объекты, связанные с ядерной энергией.

Таким образом, источник α-частиц может быть самым разнообразным.

Определяется такой вид излучения с помощью специального прибора – счетчика частиц. Такие устройства показывают наличие самой частицы, атома и их характеристики. Самый известный такой детектор — счетчик Гейгера.

О гамме излучение

Все знают, что атомы всех веществ содержат в себе ядро и электроны, которые вращаются вокруг него. Как правило, ядро – это довольно стойкое образование, которому трудно нанести повреждения.

При этом существуют вещества, ядра которых неустойчивы, и при некотором воздействии на них происходит излучение их составляющих. Такой процесс называется радиоактивным, он имеет определенные составляющие, названные по первым буквам греческого алфавита:

  • альфа,
  • бета,
  • гамма излучения.

Стоит отметить, что радиационный процесс подразделяется на два вида в зависимости от того, что именно в результате выделяется.

Виды:

  1. Поток лучей с выделением частиц – альфа, бета и нейтронное;
  2. Излучение энергии – рентгеновское и гамма.

Гамма излучение – это поток  энергии в виде фотонов. Процесс разделения атомов под воздействием радиации сопровождается образованием новых веществ. При этом атомы вновь образовавшегося продукта имеют довольно нестабильное состояние. Постепенно при взаимодействии элементарных частиц возникает восстановление равновесия. В результате происходит выброс лишней энергии в виде гаммы.

Проникающая способность такого потока лучей очень высока. Оно способно проникать через кожные покровы, ткани, одежду. Более тяжелым будет проникновение через металл. Чтобы задержать такие лучи необходима довольно толстая стена из стали или бетона.  Однако длина волныγ-излучения очень мала и составляет меньше 2·10−10 м, а ее частота  находится в диапазоне 3*1019 – 3*1021 Гц.

Гамма частицами являются фотоны с довольно высокой энергией. Исследователи утверждают, что энергия гаммы излучения может превышать показатель 105 эВ. При этом граница между рентгеновскими и γ-лучами далеко не резкая.

Источники:

  • Различные процессы в космическом пространстве,
  • Распад частиц в процессе опытов и исследований,
  • Переход ядра элемента из состояния с большой энергией в состояние покоя или с меньшей энергией,
  • Процесс торможения заряженных частиц в среде либо движение их  в магнитном поле.

Открыл гамма излучение французский физик Поль Виллар в 1900 году, проводя исследование излучения радия.

Что собой представляет альфа-излучение

Продолжив свои опыты, Резерфорд установил, что это излучение испытывает заметное отклонение не только в магнитном, но и в электрическом поле. Причём явно тяготеет к отрицательному полюсу. Целая серия подобных опытов, выполняемых в вакуумных установках, позволила определить, что такое альфа-излучение — это положительные частицы, параметры которых в точности совпадают с параметрами… ядер гелия. У обычного атома гелия всего лишь два электрона. Расставшись с ними, получается дважды ионизированный атом, то есть ядро гелия. Поэтому говоря об α-излучении, совершенно правомерно утверждать, что это дважды ионизированные атомы гелия.

Источники альфа-излучения

Существует несколько естественных и искусственных источников альфа-излучения.

  1. Ядерный альфа-распад тяжёлых элементов (радий, торий и др.), при котором происходит испускание ядер гелия.
  2. Ускоренные ядра гелия, стремящиеся в объятия земного тяготения из космических глубин вместе с потоками межзвёздного газа.
  3. Эксперименты, проводимые в радиоизотопных лабораториях и на ускорителях заряженных частиц.
  4. Объекты урановой промышленности и ядерные реакторы.

Как ведёт себя альфа-излучение в разных средах

Начальная скорость альфа-частиц заключена в пределах 14–20 тыс. км/с. А поскольку это достаточно тяжёлые частицы (они массивнее бета-частиц в 7300 раз!), то их ионизирующая способность весьма велика.

Так, в зависимости от начальной энергии, альфа-частица, двигаясь в воздухе при 15° C и нормальном атмосферном давлении, способна создать 150 000–250 000 пар ионов. Затраты энергии на ионизацию весьма велики, поэтому срок жизни этих частиц весьма недолог. По мере замедления этих частиц, их ионизационная способность возрастает.

Свободный пробег альфа-частиц в воздухе находится в пределах 3–11 см, а в твёрдых и жидких средах всего — сотые доли миллиметра.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Какой из типов радиоактивного излучения представляет собой поток положительно заряженных частиц?

1) ​\( \alpha \)​-излучение 2) ​\( \beta \)​-излучение 3) ​\( \gamma \)​-излучение 4) поток нейтронов

2. При исследовании естественной радиоактивности были обнаружены три вида излучений: альфа-излучение, бета-излучение и гамма-излучение. Что представляет собой гамма-излучение?

1) поток электронов 2) поток нейтронов 3) поток ядер атомов гелия 4) электромагнитное излучение

3. При исследовании естественной радиоактивности были обнаружены три вида излучений: альфа-излучение (поток альфа-частиц), бета-излучение (поток бета-частиц) и гамма-излучение. Каковы знак и модуль заряда бета-частиц?

1) отрицательный и равный элементарному заряду 2) положительный и равный по модулю двум элементарным зарядам 3) положительный и равный по модулю элементарному заряду 4) альфа-частицы не имеют заряда

4. Радиоактивный препарат помещен в магнитное поле. В этом поле не отклоняются

A. ​\( \alpha \)​-лучи Б. \( \beta \)-лучи B. \( \gamma \)-лучи

Правильный ответ

1) только А 2) только А и Б 3) только В 4) только А и В

5. Какое из трёх типов излучения — ​\( \alpha \)​, ​\( \beta \)​ или ​\( \gamma \)​ — обладает наименьшей проникающей способностью?

1) ​\( \alpha \)​ 2) \( \beta \) 3) \( \gamma \) 4) проникающая способность всех типов излучения одинакова

6. Какой вывод можно было сделать из результатов опытов Резерфорда?

1) атом представляет собой положительно заряженный шар, в который вкраплены электроны 2) ядро атома имеет такие же размеры, что и ​\( \alpha \)​-частицы 3) атом имеет положительно заряженное ядро, вокруг которого вращаются электроны 4) атом излучает и поглощает энергию порциями

7. Почему в опыте Резерфорда большая часть ​\( \alpha \)​-частиц практически не отклоняется от прямолинейной траектории?

1) ядро атома имеет малые но сравнению с \( \alpha \)-частицей размеры 2) ядро атома имеет положительный заряд 3) ядро атома имеет малые по сравнению с атомом размеры 4) ядро атома притягивает \( \alpha \)-частицы

8. Суммарный заряд электронов в нейтральном атоме:

1) отрицательный и равен по модулю заряду ядра 2) положительный и равен по модулю заряду ядра 3) может быть положительным или отрицательным, но равным по модулю заряду ядра 4) отрицательный и всегда больше по модулю заряда ядра

9. Число электронов в нейтральном атоме равно

1) числу нейтронов в ядре 2) числу протонов в ядре 3) суммарному числу нейтронов и протонов 4) разности между числом протонов и нейтронов

10. Атом становится отрицательно заряженным ионом, если

1) он потеряет электроны 2) к нему присоединятся электроны 3) он потеряет протоны 4) к нему присоединятся протоны

11. Установите соответствие между видом излучения (в левом столбце таблицы) и его характеристикой (в правом столбце таблицы). В таблице под номером вида излучения левого столбца запишите соответствующий номер выбранного вами элемента правого столбца.

ВЕЛИЧИНА A. Альфа-излучение Б. Бета-излучение B. Гамма-излучение

ХАРАКТЕРИСТИКА ИЗЛУЧЕНИЯ 1. Отрицательный заряд, равный двум элементарным зарядам 2. Отрицательный заряд, равный элементарному заряду 3. Положительный заряд, равный по модулю двум элементарным зарядам 4. Положительный заряд, равный по модулю элементарному заряду 5. Отсутствие заряда

12. Из приведённых ниже высказываний выберите 2 правильных и запишите их номера в таблицу.

1) магнитное поле не действует на гамма-излучение 2) магнитное поле сильнее отклоняет альфа-частицы 3) магнитное поле сильнее отклоняет бета-частицы 4) все три вида излучения, обнаруженные при исследовании естественной радиоактивности, отклоняются магнитным полем 5) радиоактивностью обладают все элементы таблицы Менделеева

Как защититься от гамма-излучения

Какая же защита  существует, и что сделать, чтобы уберечься от этих вредных лучей?

В современном мире человек окружен различными излучениями со всех сторон. Однако гамма частицы из космоса оказывают минимальное воздействие. А вот то, что находится вокруг представляет гораздо большую опасность. Особенно это относится к людям, работающим на различных атомных станциях. В таком случае защита от гамма излучения состоит в применении некоторых мер.

Меры:

  • Не находится длительное время в местах с таким излучением. Чем дольше времени человек находится под воздействием этих лучей, тем больше разрушений возникнет в организме.
  • Не стоит находиться там, где расположены источники излучения.
  • Необходимо использовать защитную одежду. В ее состав входит резина, пластик с наполнителями из свинца и его соединений.

Стоит отметить, что коэффициент ослабления гамма излучения зависит от того, из какого материала сделан защитный барьер. Так, например, лучшим металлом считается свинец в виду его свойства поглощать излучение в большом количестве. Однако он плавится при  довольно низких температурах, поэтому в некоторых условиях используется более дорогой металл, например, вольфрам или тантал.

Еще один способ обезопасить себя – это измерить мощность гамма излучения в Вт. Кроме того, мощность измеряется также в зивертах и рентгенах.

Норма гамма излучения не должна превышать 0,5 микрозиверта в час. Однако лучше если этот показатель не будет выше 0,2 микрозиверта в час.

Чтобы измерить гамма излучение, применяется специальное устройство – дозиметр. Таких приборов существует довольно много. Часто используется такой аппарат, как «дозиметр гамма излучения дкг 07д дрозд». Он предназначен для оперативного и качественного измерения гамма и рентгеновского излучения.

У такого устройства есть два независимых канала, которые могут измерять МЭД и Эквивалент дозировки. МЭД гамма излучения это мощность эквивалентной дозировки, то есть количество энергии, которую поглощает вещество в единицу времени с учетом того, какое воздействие лучи оказывают на человеческий организм. Для этого показателя также существуют определенные нормы, которые обязательно должны быть учтены.

Излучение способно негативно влиять на организм человека, однако даже для него  нашлось применение в некоторых сферах жизни.

Источники бета-частиц

Бета-излучение (естественное) является потоком, который состоит из мелких отрицательно заряженных частичек, которые способны нести положительный и отрицательный заряд. Однако при распаде криптона, прометия и стронция можно наблюдать излучение бета-лучей.

Следует отметить, что существуют и радиоактивные источники. В основном это один элемент из всего семейства естественного облучения, которое появляется из глубин космоса, просачиваясь сквозь недра земли в те места, где имеются рудные залежи, содержащие частицы радиации.

В сентябре 2013 года произошла авария техногенного характера на атомной электростанции Фукусима, что стало причиной утечки воды радиоактивной. Человек целенаправленно делает источники бета-излучения, чтобы реализовать практические нужды. Кроме этого, существуют спектрометрические источники, которые нужны для того, чтобы проводить градуировку спектрометра ядерного излучения. Такие источники считаются образцовыми мерами величин: активность нуклида, энергия самого излучения.

Как защититься от гамма-излучения

Вся наша жизнь проходит на фоне естественных электромагнитных излучений. И вклад гамма-квантов в этот фон достаточно значителен. Однако, несмотря на их периодические всплески, вред их для живых организмов минимален. Здесь землян спасают огромные расстояния от источников этих излучений. Совсем иное — земные источники. Особую опасность несут АЭС: их ядерные реакторы, технологические контуры и другое оборудование. Организация защиты от гамма-излучения персонала на этих и других подобных объектах включает следующие мероприятия.

  1. Защиту временем, то есть ограничением времени работы. Ликвидаторам аварии на Чернобыльской АЭС на выполнение конкретной работы давалось несколько минут. Промедление вызывало дополнительную дозу облучения и тяжёлые последствия.
  2. Защиту расстоянием (от работающего до опасной зоны).
  3. Метод защиты барьером (материалом).

Для эффективной защиты от гамма-излучения используются материалы с большим атомным номером и высокой плотностью. Этим критериям удовлетворяют:

  • свинец;
  • бетон;
  • свинцовое стекло;
  • сталь.

Наилучшей интенсивностью поглощения γ-лучей обладает свинец. Пластинка свинца толщиной в 1 см, 5 см бетона и 10 см воды — ослабляют это излучение в два раза, однако, не являются для них непреодолимой преградой. Применение свинца в качестве защиты против воздействия гамма-излучения ограничивается его низкой температурой плавления. Поэтому в горячих зонах используют дорогие металлы:

  • вольфрам;
  • тантал.

Для изготовления защитной одежды сотрудников, работающих в зоне действия источников излучения или радиоактивного заражения используются специальные материалы. Его основу составляет резина, пластик или каучук со специальным наполнителем из свинца и его соединений.

В качестве средств защиты могут быть задействованы противорадиационные экраны.

Из всех видов радиации именно гамма-излучение обладает наибольшей проникающей способностью. В этом случае наиболее эффективным способом защиты от внешнего гамма-излучения являются специальные укрытия, а при их отсутствии — подвалы домов. Чем толще стены, тем надёжнее укрытие. Подвал многоэтажного дома способен ослабить действие радиации в 1000 раз.

К сожалению, опасность радиационного заражения может возникнуть совершенно внезапно. И облучение могут получить люди совершенно не имеющие отношения к ядерной энергетике. Надеемся, что полученная информация поможет вам сохранить своё здоровье и уберечься от угрозы дополнительного радиоактивного облучения.

Щит от радиации

Для защиты от гамма-излучения наиболее эффективны тяжелые элементы, такие как свинец. Чем больше номер элемента в таблице Менделеева, тем сильнее в нем проявляется фотоэффект. Степень защиты зависит и от энергии частиц излучения. Даже свинец ослабляет излучение от цезия-137 (662 кэВ) лишь в два раза на каждые 5 мм своей толщины. В случае кобальта-60 (1173 и 1333 кэВ) для двукратного ослабления потребуется уже более сантиметра свинца. Лишь для мягкого гамма-излучения, такого как излучение кобальта-57 (122 кэВ), серьезной защитой будет и достаточно тонкий слой свинца: 1 мм ослабит его раз в десять. Так что противорадиационные костюмы из фильмов и компьютерных игр в реальности защищают лишь от мягкого гамма-излучения.

Бета-излучение полностью поглощается защитой определенной толщины. Например, бета-излучение цезия-137 с максимальной энергией 514 кэВ (и средней 174 кэВ) полностью поглощается слоем воды толщиной в 2 мм или всего 0,6 мм алюминия. А вот свинец для защиты от бета-излучения использовать не стоит: слишком быстрое торможение бета-электронов приводит к образованию рентгеновского излучения. Чтобы полностью поглотить излучение стронция-90, нужно менее 1,5 мм свинца, но для поглощения образовавшегося при этом рентгеновского излучения требуется еще сантиметр!

Народные средства

Существует устоявшийся миф о «защитном» действии спиртного, однако он не имеет под собой никакого научного обоснования. Даже если красное вино содержит природные антиоксиданты, которые теоретически могли бы выступать в роли радиопротекторов, их теоретическая польза перевешивается практическим вредом от этанола, который повреждает клетки и является нейротоксическим ядом.
Чрезвычайно живучая народная рекомендация пить йод, чтобы не «заразиться радиацией» оправдана разве что для 30-километровой зоны вокруг свежевзорвавшейся АЭС. В этом случае используется йодид калия, чтобы «не пустить» в щитовидку радиоактивный йод-131 (период полураспада — 8 суток). Используется тактика меньшего зла: пусть лучше щитовидная железа будет «забита» обычным, а не радиоактивным йодом. И перспектива получить расстройство функций щитовидки меркнет перед раком или даже летальным исходом. Но вне зоны заражения глотать таблетки, пить спиртовой раствор йода или мазать им шею спереди не имеет никакого смысла — профилактического значения это не имеет, а вот заработать йодное отравление и превратить себя в пожизненного пациента эндокринолога можно легко.

От внешнего альфа-облучения защититься проще всего: для этого достаточно листа бумаги. Впрочем, большая часть альфа-частиц не проходит в воздухе и пяти сантиметров, так что защита может потребоваться разве что в случае непосредственного контакта с радиоактивным источником. Куда важнее защититься от попадания альфа-активных изотопов внутрь организма, для чего используется маска-респиратор, а в идеале — герметичный костюм с изолированной системой дыхания.

Наконец, от быстрых нейтронов лучше всего защищают богатые водородом вещества. Например, углеводороды, самый лучший вариант — полиэтилен. Испытывая столкновения с атомами водорода, нейтрон быстро теряет энергию, замедляется и вскоре становится неспособен вызывать ионизацию. Однако такие нейтроны все еще могут активировать, то есть преобразовывать в радиоактивные, многие стабильные изотопы. Поэтому в нейтронную защиту часто добавляют бор, который очень сильно поглощает такие медленные (их называют тепловыми) нейтроны. Увы, толщина полиэтилена для надежной защиты должна быть как минимум 10 см. Так что она получается ненамного легче, чем свинцовая защита от гамма-излучения.

Таблетки от радиации

Человеческий организм более чем на три четверти состоит из воды, так что основное действие ионизирующего излучения — радиолиз (разложение воды). Образующиеся свободные радикалы вызывают лавинный каскад патологических реакций с возникновением вторичных «осколков». Кроме того, излучение повреждает химические связи в молекулах нуклеиновых кислот, вызывая дезинтеграцию и деполимеризацию ДНК и РНК. Инактивируются важнейшие ферменты, имеющие в своем составе сульфгидрильную группу — SH (аденозинтрифосфатаза, сукциноксидаза, гексокиназа, карбоксилаза, холинэстераза). При этом нарушаются процессы биосинтеза и энергетического обмена, из разрушенных органелл в цитоплазму высвобождаются протеолитические ферменты, начинается самопереваривание. В группе риска в первую очередь оказываются половые клетки, предшественники форменных элементов крови, клетки желудочно-кишечного тракта и лимфоциты, а вот нейроны и мышечные клетки к ионизирующему излучению довольно устойчивы.

Возникновение гамма-излучения

Источниками излучения в гамма-диапазоне являются различные процессы. Во вселенной существуют объекты, в которых происходят реакции. Результатом этих реакций является космическое гамма-излучение.

Основные источники гамма-лучей — это квазары и пульсары. Ядерные реакции с массивным выделением энергии и гамма-излучения также происходят в процессе преобразования звезды в сверхновую.

Гамма электромагнитное излучение возникает при различных переходах в области атомной электронной оболочки, а также при распаде ядер некоторых элементов. Среди источников гамма-лучей можно также назвать определённую среду с сильным магнитным полем, где элементарные частицы тормозятся сопротивлением этой среды.

Что такое альфа-излучение и особенности

Чтобы понять, что такое альфа-радиация, нужно изучить особенности этого излучения.

Поток состоит из частиц, обладающих такими свойствами:

  1. Достаточно низкая стартовая скорость. Большая относительная масса негативно снижает способность частиц к движению.
  2. Способность к созданию 200000 пар ионов в 1 см³ вещества. Подобное возможно при соблюдении некоторых условий: отсутствие преград на пути движения, средняя температура воздуха +15°С, нормальное атмосферное давление.
  3. Небольшая продолжительность жизни. Связано это с тем, что ионизация требует больших энергетических затрат. При снижении скорости перемещения ионизирующая способность частицы резко возрастает.
  4. Путь движения частиц по воздуху, не превышающий 11 см (при благоприятных условиях). Жидкие и твердые среды препятствуют распространению альфа-лучей. Здесь они не могут пройти даже 1 мм.

Где применяется гамма-излучение

При неконтролируемом, стихийном воздействии этого излучения последствия могут быть весьма тяжёлые. А учитывая, что оно обладает ещё и «инкубационным» периодом расплата может настигнуть через много лет и даже через поколения.

Однако пытливые умы учёных сумели найти многочисленные применения гамма-излучению:

  • стерилизация некоторых продуктов, медицинских инструментов и оборудования;
  • контроль за внутренним состоянием изделий (гамма-дефектоскопия);
  • определение глубины скважин в геологии;
  • точное измерение расстояний, преодолеваемых космическими аппаратами;
  • дозированное облучение растений позволяет получать их мутации, из которых затем отбирают высокопродуктивные сорта.

Как эффективный терапевтический метод лечения гамма-излучение применяется в медицине. Эта методика носит название лучевой терапии. В ней используется особенность гамма-излучения воздействовать в первую очередь на быстро делящиеся клетки.

Этот метод применяют для лечения рака, сарком в тех случаях, когда другие методы лечения неэффективны. Дозированное и направленное облучение позволяет подавить жизнедеятельность патологических клеток опухоли.

Где ещё встречается гамма-излучение

Сейчас мы знаем, что такое гамма-излучение и осознаём сопряжённые с ним опасности. Поэтому постоянно изыскиваем новые способы как защититься от него. Но столетие назад отношение к радиоактивности было более беспечным.

  1. Начиная с 1902 года радиоактивной глазурью покрывали предметы керамики и ювелирные украшения, с помощью подобных излучающих добавок изготавливали цветное стекло. Поэтому бережно хранимые старинные сувениры, могут являться миной замедленного действия.

  2. Немалую опасность могут таить предметы, найденные или приобретаемые на территории расформированных воинских частей, в старом медицинском или измерительном оборудовании.
  3. Многие рачительные хозяева находят в металлоломе незнакомые предметы, разбирают их из-за любопытства или в надежде найти им применение. Прежде чем взять такую вещицу в руки, попытайтесь узнать окружающий её радиационный фон.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector