Переменный электрический ток

Краткая история электричества

Кто изобрел электричество? А никто! Люди постепенно понимали, что это такое и как им пользоваться.

Все началось в 7 веке до нашей эры, в один солнечный (а может и дождливый, кто знает) день. Тогда греческий философ Фалес заметил, что, если потереть янтарь о шерсть, он будет притягивать легкие предметы.

Потом были Александр Македонский, войны, христианство, падение Римской империи, войны, падение Византии, войны, средневековье, крестовые походы, эпидемии, инквизиция и снова войны. Как вы поняли, людям было не до какого-то там электричества и натертых шерстью эбонитовых палочек.

В каком году изобрели слово «электричество»? 1600 году английский естествоиспытатель Уильям Гилберт решил написать труд «О магните, магнитных телах и о большом магните — Земле». Именно тогда и появился термин «электричество».

Через сто пятьдесят лет, в 1747 году Бенджамин Франклин, которого мы все очень любим, создал первую теорию электричества. Он рассматривал это явление как флюид или нематериальную жидкость.

Именно Франклин ввел понятие положительного и отрицательного зарядов (до этого разделяли стеклянное и смоляное электричество), изобрел молниеотвод и доказал, что молния имеет электрическую природу.

Бенджамина любят все, ведь его портрет есть на каждой стодолларовой купюре. Помимо работы в точных науках, он был видным политическим деятелем. Но вопреки распространенному заблуждению, Франклин не был президентом США.

Дальше пойдет перечисление важных для истории электричества открытий.

1785 год – Кулон выясняет, с какой силой противоположные заряды притягиваются, а одноименные отталкиваются.

1791 год – Луиджи Гальвани случайно заметил, что лапки мертвой лягушки сокращаются под действием электричества.

Принцип работы батарейки основан на гальванических элементах. Но кто создал первый гальванический элемент? Основываясь на открытии Гальвани, другой итальянский физик Алессандро Вольта в 1800 году создает столб Вольта – прототип современной батарейки.

На раскопках рядом с Багдадом нашли батарейку возрастом больше двух тысяч лет. Какой древний айфон с ее помощью подзаряжали – остается загадкой. Зато известно точно, что батарейка уже «села». Этот случай как бы говорит: может быть, люди знали об электричестве намного раньше, но потом что-то пошло не так.

Уже в 19 веке Эрстед, Ампер, Ом, Томсон и Максвелл совершили настоящую революцию. Был открыт электромагнетизм, ЭДС индукции, электрические и магнитные явления связали в единую систему и описали фундаментальными уравнениями.

Кстати! Если у вас нет времени, чтобы самостоятельно разбираться со всем этим, для наших читателей сейчас действует скидка 10% на любой вид работы

20 век принес квантовую электродинамику и теорию слабых взаимодействий, а также электромобили и повсеместные линии электропередач. Кстати, знаменитый электромобиль Тесла работает на постоянном токе.

Конечно, это очень краткая история электричества, и мы не упомянули очень много имен, которые повлияли на прогресс в этой области. Иначе пришлось бы написать целый многотомный справочник.

Направление постоянного тока и обозначения на электроприборах и схемах

Чтобы упростить расчеты и создание электрических схем, принимают направленность этого параметра по направлению к точке с меньшим потенциалом (от плюса к минусу). В действительности частицы перемещаются именно таким образом только при положительном заряде. В металле направление потока электронов обратное, однако для исключения путаницы применяют обозначенный базовый принцип.

Изоляция положительных выводов (щупов, кабелей) обозначается красным цветом, отрицательных – черным или синим. Если в сопроводительном тексте указано dc напряжение, это значит, что и ток в соответствующей цепи будет постоянный. На чертежах и корпусах изделий применяют условные обозначения в виде параллельных линий (сплошной и прерывистой).

Для измерения постоянного тока переключатель мультиметра нужно перевести в соответствующее положение

К сведению. Анод (катод) – это выводы электронной лампы или другой детали, которые подключают к положительному (отрицательному) электроду аккумуляторной батареи.

Также можно встретить обозначение a c что это такое, подробно описано в заключительном разделе статьи. Прямая расшифровка сокращения от «alternating current» не всегда корректна. Однако в узком смысле подразумевают синусоиду с переменной полярностью, которая обозначается латинскими буквами «AC», характерным одиночным волнистым символом либо стандартным математическим знаком примерного равенства «≈».

Химический источник тока

Химические источники питания постоянного тока – это семейство устройств и аппаратов, которые выдают напряжение на своих клеммах в результате внутренних химических процессов окисления или гальванизации. Их работа основана на реакциях химических веществ, которые, вступая во взаимодействие между собой, производят постоянный электроток.

К сведению. Процессы, протекающие в химических источниках (ХИТ), идут без тепловых или механических воздействий. Это выделяет их в особый ряд среди устройств, генерирующих напряжения постоянной полярности.

Некоторые виды химических источников тока

Термины и определения подробно описаны в ГОСТ Р МЭК 60050-482-2011, введённом в действие 01.07.2012 года. В нём сокращённо обозначены химические источники тока – ХИТ.

Разделение по видам ХИТ производят в следующей градации:

  • первичные;
  • топливные;
  • аккумуляторы.

Это различие проведено по способу действия источника.

Химические источники тока

Элементы однократного применения – первичные источники. В них заложен конечный запас реагентов, которые вступят в реакцию и перестанут вырабатывать энергию по окончании процесса. Это различные батарейки типа АА.

Топливные ХИТ способны работать постоянно, но требуют поступления новой дозы веществ и удаления отработанных продуктов. По сути, это гальваническая ячейка, куда подводятся раздельно топливо и окислитель, они вступают в реакцию на двух электродах. В электролите растворяется топливо, и происходит катодное окисление. Это практически прецизионный лабораторный процесс.

Схема работы топливного элемента

Вторичные элементы, которые имеют возможность использоваться много раз, после подзаряда или перезаряда называются аккумуляторами. Если к таким устройствам подключить ток, то они снова регенерируются и аккумулируют энергию. Они нашли самое широкое применение в питании мобильных устройств и механизмов.

Аккумуляторный источник тока

Напряжение переменного тока

Как известно еще с уроков физики, ток – это движение заряженных частиц, которое возникает под воздействием на них электромагнитного поля, разности потенциалов и напряженности. Основная характеристика любого напряжения – это зависимость от времени. Исходя из этого, различают постоянную и переменную величины. Значение постоянного с течением времени практически не изменяется, а переменного – изменяется.

Закон Ома

В свою очередь переменная характеристика бывает периодической и непериодической. Периодическое – это напряжение, значения которого повторяются через одинаковые интервалы времени. Непериодическое же способно изменяться в любой отрезок времени.

Схема описания физического смысла

Напряженность в переменной цепи – это такой параметр, который изменяет свою величину с течением времени. Для упрощения разъяснений в дальнейшем будет рассматриваться синусоидальное гармоническое переменное напряжение.

Минимальное время, в течение которого переменная величина повторяется, называется периодом. Абсолютно любую периодическую величину можно записать зависимостью от какой-либо функции. Если время – это t, то зависимость будет обозначаться F(t). Таким образом, любой период во времени имеет вид: F(t+-T) = F(t), где T – период.

Физическая величина, которая является обратной периоду, называется частотой. Она равна 1/T. Единицей ее измерения является герц, в то время как единицей измерения периода стала секунда.

f = 1/T, 1 Гц = 1/с = с в минус первой степени.

Формулы колебаний

Важно! Чаще всего встречается функциональная зависимость переменной сети в виде синусоиды. Именно поэтому она была взята за основу этого материала

Из математики известно, что синусоида – это простейшая периодическая функция, и с ее помощью из нескольких синусоид с кратными частотами можно представить любые другие периодические функции.

Синусоидальная напряженность в абсолютно любой промежуток времени может описать моментальная характеристика: u = U * sin(ωt + φ), где ω = 2πf = 2π/T, где U – максимальное напряжение (амплитуда), ω – угловая скорость изменения, φ – начальная фаза, которая определяется смещением функции относительно нулевой точки координат.

Синусоидальная функция

Часть (ωt + φ) – это фаза, которая характеризует значение напряжения в конкретный промежуток времени. Из этого выходит, что амплитуда, угловая скорость и фаза – это основные характеристики переменных сетей, определяющие их значения в любой интервал времени.

Важно! При рассмотрении синусоидальной функции фазу часто принимают за ноль. На практике также часто прибегают к еще некоторым параметрам, включающим действующее и среднее напряжение, коэффициент формы

Регулятор переменного напряжения

Электронные преобразователи

Однако не всегда рационально или удобно использовать бензиновые или дизельные бытовые электростанции. Есть выход – получить однофазный или трёхфазный переменный электрический ток из постоянного. Для этого используют преобразователи или, как их еще называют инверторы.

Инвертор – это устройство, которое преобразует величину и род электрического тока. В магазинах можно найти инверторы 12-220 или 24-220 Вольт. Соответственно эти приборы постоянные 12 или 24 Вольта превращают в 220В переменного тока с частотой в 50Гц. Схема простейшего подобного преобразователя на базе драйвера для полумостового преобразователя IR2153 изображена ниже.

Такая схема выдаёт модифицированную синусоиду на выходе. Она не совсем подходит для питания индуктивной нагрузки, типа двигателей и дрелей. Но если не на постоянной основе – то вполне можно использовать и такой простой инвертор.

Преобразователи постоянного тока в переменный с чистой синусоидой на выходе стоят значительно дороже, а их схемы значительно сложнее.

Важно! Приобретая дешевые платы-модули с «алиэкспресс» не рассчитывайте ни на чистый синус, ни на 50Гц частоту. Большинство таких устройств выдают высокочастотный ток с напряжением 220В

Его можно использовать для питания различных нагревателей и ламп накаливания.

Мы кратко рассмотрели принципы получения переменного тока в домашних условиях и в промышленных масштабах. Физика этого процесса известна уже почти 200 лет, тем не менее основным популяризатором этого способа получить электрическую энергию был Никола Тесла в конце XIX — первой половине XX века. Большинство современного бытового и промышленного оборудования ориентированы на использования именного переменного тока для электропитания.

Напоследок рекомендуем просмотреть видео, на котором наглядно показывается как работает генератор переменного тока:

Наверняка вы не знаете:

  • Чем отличается переменный ток от постоянного
  • Способы понижения напряжения
  • Как получить электричество из земли

Опубликовано:
26.11.2018
Обновлено: 26.11.2018

Применение в современном мире

Он повсеместно. Любые современные приборы, работающие как от сети, так и от аккумуляторов, используют постоянный ток. В первом случае устройство предусматривает специальный элемент, преобразующий электричество из одной разновидности в другую. Во втором же в источнике питания происходит химическая реакция, которая поддерживает напряжение неизменным. Казалось бы, что в этом случае проще было бы, если бы в сети был постоянный, а не переменный ток, но это не так. Вторую разновидность проще вырабатывать, а также его не приходится преобразовывать для работы трансформаторов. А устройства, позволяющие из переменного получать постоянный называются выпрямителями, хотя приборы, проводящие обратное действие, — инверторами. Нашел свое применение этот вид тока и в электрохимии, некоторых видах сварки, обработке металлов, медицине и многих других областях. Он действительно везде, и иногда это кажется настоящим чудом, ведь все начиналось с обычного янтаря.

Включение в цепи синусоидальной ЭДС

Конденсаторы в цепи постоянного тока не работают динамично. Поэтому имеет смысл изучать электрические параметры при подключении генератора синусоидального сигнала. В этой ситуации, кроме энергетических процессов, можно проверить частотные зависимости.

Виды включений

Параллельный способ соединения увеличивает емкость:

Собщ = С1 + С2.

Для уменьшения основного функционального параметра используют последовательную схему:

1/Собщ = 1/С1 + 1/С2.

При подключении к источнику переменного тока конденсатор подойдет для решения следующих задач:

  • устранение постоянной компоненты сигнала;
  • ухудшение проводимости для определенного частотного диапазона;
  • настройка частоты колебательного контура и других радиотехнических схем.

При необходимости с помощью конденсатора можно гасить паразитные колебания, убирать импульсные помехи.

Простейший тип включения

Представленные выше формулы по току и напряжению можно изобразить следующим образом:

  • I = Im cos (f*t + π/2);
  • U = Uo * cosf*t.

Пояснения к описанию циклов

В простой схеме включения следует отметить следующие этапы рабочего процесса:

  1. увеличение напряжения с накоплением заряда током максимальной силы;
  2. уменьшение i(t) до нуля с одновременным достижением максимума Um;
  3. снижение U c одновременным разрядом конденсатора;
  4. достижение уровня Im c U =0.

Общий подход к выбору изделий и порядку расчетов корректируют с учетом целевого назначения. Если отсутствуют повышенные требования к точности, можно применить представленные параметры и формулы. Дополнительные данные можно получить из сопроводительной документации, на официальных сайтах производителей радиоэлектронных компонентов.

Свойства

Идеальный источник напряжения

Рисунок 2. Реальный источник напряжения под нагрузкой

Рисунок 3. Нагрузочная характеристика идеального (синий) и реального (красный) источников.

Напряжение на выводах идеального источника напряжения не зависит от нагрузки U=E=const{\displaystyle U={\mathcal {E}}={\text{const}}}. Ток определяется только сопротивлением внешней цепи R{\displaystyle R}:

I=UR.{\displaystyle I={\frac {U}{R}}.}

Модель идеального источника напряжения используется для представления реальных электронных компонентов в виде эквивалентных схем. Собственно, идеальный источник напряжения (источник ЭДС) является физической абстракцией, поскольку при стремлении сопротивления нагрузки к нулю R→{\displaystyle R\rightarrow 0} отдаваемый ток и электрическая мощность неограниченно возрастают, что противоречит физической природе источника.

Реальный источник напряжения

В реальности любой источник напряжения обладает внутренним сопротивлением r{\displaystyle r}. Следует отметить, что внутреннее сопротивление — это исключительно конструктивное свойство источника. Эквивалентная схема реального источника напряжения представляет собой последовательное включение идеального источника ЭДС E{\displaystyle {\mathcal {E}}} и внутреннего сопротивления r{\displaystyle r}.

На рисунке 3 приведены нагрузочные характеристики идеального источника напряжения (синяя линия) и реального источника напряжения (красная линия).

E=Ur+UR,{\displaystyle {\mathcal {E}}=U_{r}+U_{R},}

где

Ur=I⋅r,{\displaystyle U_{r}=I\cdot r,} — падение напряжения на внутреннем сопротивлении;
UR=I⋅R,{\displaystyle U_{R}=I\cdot R,} — падение напряжения на нагрузке.

При коротком замыкании R={\displaystyle R=0} вся мощность источника энергии рассеивается на его внутреннем сопротивлении. В этом случае ток короткого замыкания Is.c.{\displaystyle I_{\text{s.c.}}} будет максимален. Зная напряжение холостого хода Uxx{\displaystyle U_{\text{xx}}} и ток короткого замыкания, можно вычислить внутреннее сопротивление источника напряжения:

r=UxxIs.c..{\displaystyle r={\frac {U_{\text{xx}}}{I_{\text{s.c.}}}}.}

Как можно измерить переменное напряжение

Изменять непостоянную напряженность сети, как и любые другие электрические характеристики сети, можно с помощью специальных измерительных приборов: вольтметров, амперметров, омметров. Современные тестеры и мультиметры содержат в себе функции их всех, поэтому лучше пользоваться ими. Для того чтобы измерить параметр, следует следовать инструкции:

Найти шкалу измерения на приборе, которая чаще всего находится справа.
Выставить предел измерения, зная, что, например, в розетке приблизительно 220 вольт.
Взять щупы и вставить их в источник

При этом неважно, какой щуп куда будет вставлен.
Произвести измерения с учетом техники безопасности.
Зафиксировать полученные показатели.. Однофазный двигатель

Однофазный двигатель

Таким образом, отличие постоянного напряжения от переменного есть, и оно существенное. На основании постоянных и непостоянных токовых сил изготовлены генераторы, конвертирующие механическую энергию в электрический ток различных видов, который можно быстрее и дальше подать по проводам.

Схемы

Однополупериодный выпрямитель. Простейшая схема с минимальным количеством элементов. Качество выпрямленного напряжения невысокое.

Схема однофазного однополупериодного выпрямителя

Двухполупериодный выпрямитель, схема со средней точкой. Уровень пульсаций U  в данном случае ниже по сравнению с предыдущим вариантом.

Двухполупериодная схема выпрямления со средней точкой

Двухполупериодный выпрямитель, мостовая схема. Самый популярный вариант для промышленной аппаратуры. В схеме используется 4 диода. Сглаживает пульсации напряжения RC-фильтр, установленный на выходе. Нередко его заменяет электролитический конденсатор.

Схема двухполупериодного мостового выпрямителя

Обзор источников электричества

Для получения электротока с неизменяемыми во времени значениями напряжения необходимо разделение заряженных частиц и накопление их в одном месте. Для этого используются различные физические явления. Чаще всего для получения электрического постоянного тока применяются электролитические источники, в частности, обычные батарейки и аккумуляторы. За счет электрохимических реакций электроны накапливаются на катоде и возникает их нехватка на аноде. При замыкании контактов протекает электроток.

В промышленных масштабах постоянный ток получают из переменного при помощи выпрямителей и стабилизаторов. Диодный мост пропускает только часть синусоиды переменного тока, а стабилизаторы сглаживают полученные пульсации. Городской электротранспорт (метрополитен, трамваи и троллейбусы) как раз и работает на таком выпрямленном токе.

Генераторы постоянного тока постепенно выходят из обихода ввиду их малой производительности. Затраты энергии для запуска их в работу значительно превосходят получаемую в итоге электрическую энергию. Их заменой стали инверторные источники постоянного тока, которые обладают высоким КПД, малым весом, небольшими размерами и надежностью. К их достоинствам можно отнести и отсутствие пульсаций в получаемом из переменного постоянном токе.

Основной источник переменного электротока — генератор. Схематично он состоит из намагниченного ротора и статора из проводников. При вращении ротора магнитное поле меняет свой вектор по времени, что вызывает появление электродвижущей силы в обмотках проводника статора. С его контактов снимается полученное напряжение, при необходимости трансформируется и передается потребителю. По своему устройству генераторы бывают асинхронными и синхронными. На параметры выдаваемого переменного тока это практически не влияет.

Асинхронный тип более прост в конструкции, но чувствителен к кратковременным пиковым нагрузкам. Синхронные генераторы способны выдерживать пятикратные нагрузки. Их раньше использовали для питания электросварочных аппаратов переменного тока. Сегодня сварка переменным током теряет популярность из-за того, что ее качество ниже, чем сварка постоянным током. Сварочные аппараты постоянного тока становятся более доступными широким массам.

Электродвигатели переменного тока действуют по обратному принципу: протекание переменного электрического тока по обмоткам статора вызывает вращение ротора. Теоретически электродвигатель может выполнять функции генератора, а генератор может быть использован в роли электродвигателя.

https://youtube.com/watch?v=FKL9HWR4zyY

Источники и признаки постоянного тока

Движение зарядов в электрической цепи обеспечивают источники тока. Для постоянного тока источниками могут быть:

  • батарейки или аккумуляторы;
  • генераторы постоянного тока;
  • преобразователи и выпрямители импульсов переменного тока.

Гальванические элементы вырабатывают постоянный ток в результате электрохимической реакции.

Машины постоянного тока производят его с помощью электромагнитной индукции и выпрямляют в обмотках коллектора.

Схемы преобразователей и полупроводниковые выпрямители на транзисторах или высоковольтных диодах так же могут выдавать ток, характеристики которого не меняются во времени. Преобразователи могут регулировать частоту и напряжение, оставляя неизменным ток.

По каким признакам определяют наличие тока, если нет измерительных приборов? Это можно выяснить по его воздействию на проводник. Такие действия можно разделить на три вида:

  • магнитные;
  • химические;
  • тепловые.

Если через проводник, из которого выполнена обмотка катушки, пропустить электроток, то катушка станет притягивать металлические элементы. На этом принципе работают большие электромагниты, задействованные при погрузке металла в морских портах.

Химическое действие, по которому можно судить о наличии тока, – это процесс электролиза. При нём на электродах, подключенных к источнику, начинает оседать вещество. Эти процессы используются в гальваностегии или гальванопластики.

При подключении к двухполюснику проводника с высоким сопротивлением электрическому току он начинает нагреваться и отдавать тепло. Например, чтобы электроны двигались через нихромовую спираль, совершается работа с выделением тепла. Это свойство проводника используется при изготовлении нагревательных приборов.

Важно! Источник тока отличается от источника напряжения тем, что первый отдаёт одинаковый ток, независимо от сопротивления нагрузки, второй –снабжает потребителя напряжением, которое не изменяется при любой нагрузке. Квартирная розетка 220 В – источник напряжения, сварочный аппарат – токовый ресурс

Схема электрической цепи

Электрическая цепь, её графическое изображение, условные обозначения составляющих её элементов, а также символы представляют собой классическую схему расчетной модели. Подобный тип по-другому принимают, как эквивалентную схему замещения. По возможности, изображённая электротехника на схеме электрических цепей показывает весь процесс. Каждый реальный элемент цепи при проведении расчета заменяется элементами схемы.

Схема ЭЦ

В заключении следует отметить, что каждый элемент цепи, в зависимости от характера подключения и электротехнических свойств, может быть идентифицирован как источник энергии, либо как потребитель. Каждому участку на схеме ЭЦ соответствует проводник, либо конкретный прибор (трансформатор, выпрямитель, инвертор и другое электрооборудование). Только после правильного прочтения электрической схемы специалист может обеспечить её работоспособность.

Источники постоянного электрического тока

Для его получения используют специальный генератор, работа которого основана на законе электромагнитной индукции – ЭДС. Если вращать металлическую рамку, в зоне действия электромагнитного поля возникнет ЭДС, и по рамке потечёт электричество.

Генератор постоянного тока

Внимание! Увеличение ЭДС получают повышением силы поля или скорости вращения рамки. Снижения пульсации полученного движения электричества добиваются добавлением числа рамок

Немеханические производители электричества постоянной природы:

  • солнечные батареи;
  • гальванические элементы;
  • термохимические элементы.

Аккумуляторы энергии из этой группы ограниченного срока действия и требуют периодической подзарядки.

Источники постоянного тока

Обозначение источников тока

Чтобы при выборе не возникало вопроса относительно того, какой тип источника тока представлен, используются специальные обозначения. В физике существуют точные графические изображения, которые позволяют идентифицировать тип применяемого источника:

Обозначения

На каждой схеме условных обозначений можно увидеть следующие параметры:

  • Общее обозначение источника тока и движущей силы ЭДС;
  • Графическое изображение без ЭДС;
  • Химический тип;
  • Батарея;
  • Постоянное напряжение;
  • Переменное напряжение;
  • Генератор.

Благодаря графическим идентификаторам на схеме электрической цепи всегда можно определить, какой именно тип используется в конкретной ситуации, и как правильно его обозначать. Существуют также международные обозначения, которые встречаются немного реже, обычно при реализации интернациональных проектов.

Получение переменного тока

Переменный ток вырабатывают генераторы, электрические машины, —  как их принято называть в электротехнике.   Следует не забывать и о том, что в зависимости от их применения генераторы бывают как переменного так и постоянного тока.   В зависимости от их устройства, генераторы вырабатывают:

  • трехфазный ток с выходным напряжением 380 Вольт;
  • однофазный ток с выходным напряжением 220 Вольт.

Где именно могут применяться трехфазные генераторы?   Да допустим для питания трехфазной тепловой пушки на 6 кВт 380 В для обогрева складского помещения.

Тогда где-же могут применяться однофазные генераторы?   Однофазные генераторы как и трехфазные, применяются допустим в больнице — при аварийном отключении электроэнергии.

Генератору, как нам известно, необходимо придать механическое вращение якоря.   Каким образом можно придать якорю генератора  механическое  вращение?   Такими источниками служат двигатели внутреннего сгорания:

  • газовые;
  • бензиновые;
  • дизельные

и другие источники,  чтобы привести якорь генератора в движение.      Другими  источниками получения электрической энергии являются:

  • ветряные электростанции;
  • водяные электростанции;
  • турбинные электростанции.

На рисунке  показано схематическое изображение устройства генератора переменного тока \рис.1\.   Рамку в этом примере можно представить как якорь, состоящий из одного витка провода.   Рамка обозначена сторонами А, Б, В, Г.   Два проводника \А и Б\ при вращении рамки,  пересекают магнитные  силовые линии постоянного магнита С, Ю.   При пересечении проводниками силовых линий, в проводниках наводится электродвижущая сила — ЭДС.   ЭДС двух проводников по своему значению противоположны друг другу в тот момент, когда они пересекают эти силовые линии.  

рис.1 

Величина ЭДС \ри.3\, протекающего тока в рамке,  будет зависить:

  • от векличины магнитной индукции  постоянного магнита \ N,  S\;
  • длины проводника;
  • скорости пересечения проводником магнитных силовых линий

и угла наклона проводника \рис.4\  по отношению к силовым линиям постоянного магнита \sin угла альфа между направлением движения проводника и направлением магнитных силовых линий поля\. 

рис.3 

рис4 

При вращении рамки в магнитном поле, в ней наводится ЭДС двух противоположных значений  и ток, как мы можем заметить на графике \рис.5\ получается пульсирующим.   Один период Т  состоит из двух противоположных пульсаций тока, верхний полупериод — положительный и нижний полупериод — отрицательный.    Полупериод обозначен на графике как 1/2 Т.

рис.5 

Поэтому, ток в этом примере рассматривается как:

  • пульсирующий;
  • синусоидальный

либо как еще его называют — переменный ток.

Переменный ток

Как известно, сила тока в любой момент времени пропорциональна ЭДС источника тока (закон Ома для полной цепи). Если ЭДС источника не изменяется со временем и остаются неизменными параметры цепи, то через некоторое время после замыкания цепи изменения силы тока прекращаются, в цепи течет постоянный ток.

Однако в современной технике широко применяются не только источники постоянного тока, но и различные генераторы электрического тока, в которых ЭДС периодически изменяется. При подключении в электрическую цепь генератора переменной ЭДС в цепи возникают вынужденные электромагнитные колебания или переменный ток.

Переменный ток – это периодические изменения силы тока и напряжения в электрической цепи, происходящие под действием переменной ЭДС от внешнего источника

или

Переменный ток – это электрический ток, который изменяется с течением времени по гармоническому закону.

Мы в дальнейшем будем изучать вынужденные электрические колебания, происходящие в цепях под действием напряжения, гармонически меняющегося с частотой ω по синусоидальному или косинусоидальному закону:

\(~u = U_m \cdot \sin \omega t\) или \(~u = U_m \cdot \cos \omega t\) ,

где u – мгновенное значение напряжения, Um – амплитуда напряжения, ω – циклическая частота колебаний. Если напряжение меняется с частотой ω, то и сила тока в цепи будет меняться с той же частотой, но колебания силы тока не обязательно должны совпадать по фазе с колебаниями напряжения. Поэтому в общем случае

\(~i = I_m \cdot \sin (\omega t + \varphi_c)\) ,

где φc – разность (сдвиг) фаз между колебаниями силы тока и напряжения.

Переменный ток обеспечивает работу электрических двигателей в станках на заводах и фабриках, приводит в действие осветительные приборы в наших квартирах и на улице, холодильники и пылесосы, отопительные приборы и т.п.
Частота колебаний напряжения в сети равна 50 Гц. Такую же частоту колебаний имеет и сила переменного тока. Это означает, что на протяжении 1 с ток 50 раз поменяет свое направление. Частота 50 Гц принята для промышленного тока во многих странах мира. В США частота промышленного тока 60 Гц.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector