Значение слова &laquoэлектроэнергия»

Соединение источников электрической энергии.

В электроэнергетике встречаются такие случаи, когда источников электрической энергии несколько, которые включены и питают одну электрическую цепь. В зависимости от способа соединения источников, электрическая энергия ведет себя по-разному. Перед тем как углубляться в подробности следует сказать, что источники электрической энергии соединяют двумя способами — последовательно и параллельно.

Эти виды соединений я уже рассматривал при соединении конденсаторов и резисторов.

Давайте рассмотрим эти способы соединения на примере. В качестве источника электрической энергии возьмем три обычных батарейки напряжением в 1.5 вольт каждая. Также нам понадобится вольтметр и соединительные провода.

последовательное соединение источников электрической энергии

Соединив батарейка последовательно, как показано на схеме, можно будит увидеть, что вольтметр покажет напряжение гораздо большее чем у одной батарейки, а именно 4.5 вольт. Так при последовательном соединении источников электрической энергии, напряжение всех источников, входящих в цепь складывается. Стоит отметить, что суммарная емкость и мощность батареек равняется показателям одной батарейки.

параллельное соединение источников электрической энергии

Если же соединять эти же батарейки параллельно, как на схеме выше, мы увидим, что напряжение цепи с тремя параллельно соединенными батарейками равняется напряжению одной батарейки. Но мощность и емкость этой цепи источников увеличилось в несколько раз, а именно в количество соединенных источников, в данном случаи в три раза, при условии, что мощность и ёмкости батареек одинаковы.

В электроэнергетике кроме батареек последовательно или параллельно могут соединять все источники электроэнергии. Но для каждого вида источника существуют определенные условия, такие как: напряжение всех соединяемых источников должно быть одинаково, как и мощность, во избежание возникновения уравнительных токов, для соединения трансформаторов необходимо также, чтобы коэффициенты трансформации были также равны.

Немного истории создания ХИТ

Ещё в восемнадцатом веке итальянский учёный Луиджи Гальвани придумал простейший элемент который химическим способом выделял электрический ток. Однако он был не только учёным, но и физиком, врачом, физиологом. Он интересовался и проводил опыты которые были направлены на изучение реакции животных на внешние раздражители. Как и всё гениальное первый химический источник энергии был получен Луиджи абсолютно случайно, во время многочисленных экспериментов над лягушками. После присоединения двух пластин из металла к лягушачьей мышце на лапке, было замечено мускульное сокращение. Гальвани посчитал это нервной реакцией на внешний раздражитель и изложил это в результатах своих исследований, попавших в руки другого великого учёного Алессандро Вольта. Он и выложил свою теорию о возникновении напряжения в результате химической реакции, возникшей между двумя металлическими пластинами в среде мускульной ткани лягушки.

Первый химический источник электрического тока представлял собой емкость с соляным составом, в который было погружено две пластины из разных материалов. Одна из меди, другая из цинка. Именно это устройство в будущем, а конкретнее во второй половине девятнадцатого века, было применено при изобретении и создании марганцево-цинкового элемента внутри которого был тот же солевой электролит.

В автомобилях

Аккумуляторная батарея на транспорте — не единственный источник электрической энергии. Цепи автомобиля спроектированы с таким расчетом, что при движении начинается процесс преобразования кинетической энергии в электрическую. Это происходит благодаря генератору, в котором вращение катушек внутри магнитного поля порождает появление электродвижущей силы (ЭДС).

В сети начинает протекать ток, заряжающий аккумуляторную батарею, длительность работы которой зависит от её ёмкости. Зарядка начинается сразу после старта двигателя. То есть энергия вырабатывается за счет сжигания топлива. Последние разработки автомобилестроения позволили использовать ЭДС источника электрической энергии для движения транспорта.

В электромобилях мощные химические батареи вырабатывают ток в замкнутой цепи и служат источником питания. Здесь наблюдается обратный процесс: ЭДС вырабатывается в катушках приводной системы, что заставляет колеса крутиться. Токи во вторичной цепи огромные, пропорциональные скорости разгона и весу автомобиля.

Коэффициент нагрузки.

Потребительская нагрузка изменяется в зависимости от времени суток, месяца года, погоды и климата, географического расположения и экономических факторов.

Максимального (пикового) уровня нагрузка может достигать на протяжении всего лишь нескольких часов в году, но мощность электростанции или энергосистемы должна быть рассчитана и на пиковую нагрузку. Кроме того, избыток, или резерв, мощности необходим для того, чтобы можно было отключать отдельные энергоблоки для технического обслуживания и ремонта. Резервная мощность должна составлять около 25% полной установленной мощности.

Эффективность использования электростанции и энергосистемы можно характеризовать процентным отношением электроэнергии (в киловатт-часах), фактически выработанной за год, к максимально возможной годовой производительности (в тех же единицах). Коэффициент нагрузки не может быть равен 100%, так как неизбежны простои энергоблоков для планового технического обслуживания и ремонта в случае аварийного выхода из строя.

Принцип действия

Переменный – это ток, у которого величина и направление меняются во временном диапазоне. Основным принципом действия генераторов переменного тока является закон электромагнитной индукции – возникновение движения электронов в проводнике во время прохождения магнитного потока через его замкнутый контур.

Принцип действия генератора переменного (слева) и постоянного тока (справа)

Действие генераторов постоянного тока основано на законе Фарадея и проявлении ЭДС.

Когда к проводнику, имеющему внутри вращающийся постоянный магнит, подключить нагрузку, то по ней потечёт переменный ток. Это происходит из-за смены мест полюсов магнита. Для получения постоянного тока нужно эту нагрузку подключать с такой скоростью, с какой вращается магнит. Для этого предназначен в нём коллектор, который закрепляется на роторе и вращается с той же частотой. Постоянное напряжение с коллектора снимают графитные щётки. ЭДС падает до нуля, когда пластины коллектора переключаются, но не изменяет своей полярности, так как успевает подключиться к другому проводнику.

Химические источники

Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

  • гальванические элементы, являющиеся первичными источниками ;
  • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

*ХИТ — химические источники тока.

Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

  • солевые или «сухие»;
  • щелочные;
  • литиевые.

В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

К основным видам аккумуляторов относятся:

  • свинцово-кислотные;
  • никель-кадмиевые щелочные;
  • литий-ионные.

Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

Энергия ветра.

Энергия ветра в больших масштабах оказалась ненадёжной, неэкономичной и, главное, неспособной давать электроэнергию в нужных количествах.

Строительство ветряных установок усложняется необходимостью изготовления лопастей турбины больших размеров. Так, по проекту ФРГ установка мощностью 2-3 МВт должна иметь диаметр ветрового колеса 100м, причём она производит такой шум, что возникает необходимость отключения её в ночное время.

К серьёзным негативным последствиям использование энергии ветра можно отнести помехи для воздушного сообщения и для распространения радио-и телеволн, нарушения путей миграции птиц, климатические изменения вследствие нарушения естественной циркуляции воздушных потоков.

История мировой электроэнергетики

Электроэнергетика – стратегическая отрасль экономической системы любого государства. История возникновения и развития ЭЭ берёт своё начало с конца XIX столетия. Предтечей появления промышленной выработки электроэнергии являлись открытия основополагающих законов о природе и свойствах электрического тока.

Отправной точкой, когда возникли производство и передача электроэнергии, считают 1892 год. Именно тогда была построена первая электростанция в Нью-Йорке под руководством Томаса Эдисона. Станция стала источником электрического тока для ламп уличного освещения. Это был первый опыт перевода тепловой энергии от сгорания угля в электричество.

С тех пор началась эра массового строительства тепловых электростанций (ТЭС), работающих на твёрдом топливе – энергетическом угле. С развитием нефтяной промышленности появились огромные запасы мазута, которые образовывались в результате переработки нефтепродуктов. Были разработаны технологии получения носителя тепловой энергии (пара) от сжигания мазута.

С тридцатых годов прошлого века получили широкое распространение гидроэлектростанции (ГЭС). Предприятия стали использовать энергию ниспадающих потоков воды рек и водохранилищ.

В 70-е годы началось бурное строительство атомных электростанций (АЭС). Одновременно с этим стали разрабатываться и внедряться альтернативные источники электроэнергии: это ветровые установки, солнечные батареи, щелочно-кислотные геостанции. Появились мини установки, использующие тепло для получения электричества в результате химических процессов разложения навоза и бытового мусора.

Электростанции

Большая часть электричества, используемого в мире производится от электростанций, которые сжигают ископаемое топливо для создания пара. Основным видом топлива для электростанций является уголь, потому что он позволяет большое количество электроэнергии производить в одном месте.

С помощью угля в настоящее время вырабатывается свыше 50 процентов электричества

Кратко о сути возобновляемых источников электроэнергии

Есть другие способы генерации электричества с использованием природных ресурсов, которые могут быть заменены или возобновлены без ущерба окружающей среды или способствовать парниковому эффекту.

Возобновляемые источники энергии используются для создания 30 процентов электричества.

Из этих источников возобновляемой энергии гидроэнергетика является крупным донором, обеспечивая около 10 процентов общего объема электроэнергии.

15% обеспечивают атомные электростанции.

При этом доля атомных электростанций в мире различна от 77 % во Франции до 2,5 % в Китае.

Конечно большинство людей хотели бы видеть экологическое сочетание превращающееся в электрические ресурсы, но в настоящее время источники ископаемого топлива являются основой электроэнергии в мире. Сочетание и доля источников электрической силы с течением времени видоизменяются и появляются необычные источники энергии.

Гидро

Электричество из воды накапливается в огромных плотинах. Сила, созданная водой из этих плотин превращается в электричество гидро электрическими турбинами и генераторами. Самые известные источники гидроэлектрической энергии находятся на крупных реках. Это дешевле, чем добыча ископаемого топлива и не способствует парниковому эффекту.

Солнце

При генерации электроэнергии с помощью солнца предотвращает выброс в атмосферу парниковых газов.

Ветер

Перемещение воздуха, который создается, когда солнце нагревает и охлаждение воздуха движет его. Это вызывает ветер. Через века люди научились использовать силу ветра. Как солнце она может также использоваться для создания электроэнергии. Ветер генерирует менее 1% электроэнергии в мире, но больше ветровых электростанций строятся каждый год.

Биомасса

Энергия, которая поступает из свалки – или мусорные свалки. Она включает в себя образование горючего газа и тепла от материи животных и растений. Свалочный газ создается, когда выбрасываются отходы и начинается загнивание (или разложение) в земле. Этот газ, как правило, просто будет просачиваться через землю в атмосферу, способствуя экологическим проблемам, как парниковый эффект. Однако может быть захвачен и обрабатываться для создания электроэнергии. Газ собирается, сушится (чтобы избавиться от воды) а затем фильтруется (чтобы избавиться от любых отходов и частиц). Затем подается через трубы к газовому генератору, который сжигает газ для создания электроэнергии.

Геотермальная энергия

Ресурсы от тепла земли. Она была использована тысяч лет в некоторых странах для горячей воды, отопления и приготовления пищи. Она также может генерировать электричество с помощью пара производимого из тепла, найденного под поверхностью земли. Это не распространено во многих странах, но хотя экспериментально геотермальная электроэнергия изучается в малонаселенных районах и используется в некоторых частях Новой Зеландии, Европе, Камчатке (Россия), а Исландия получает более 50 % своих энергетических ресурсов из геотемальных видов.

Источники электрической энергии в настоящее время являются неотъемлемой частью нашей жизни. Многие вещи работают только с помощью электричества и значение которой мы резко не изменим. Эти изменения не будут восприниматься как положительные большинством людей. Для поддержки технологии, лежащей в производстве электричества с использованием возобновляемых и невозобновляемых ресурсов работают ученые из многих областей исследования, в том числе химии, геологии, физики и биологии.

Аргументы в пользу более возобновляемых источников электрической энергии включают в себя:

Необходимость сохранения энергетических ресурсов для будущего

Угроза повышения парникового газа индуцированного изменением климата.

Противоположные аргументы для использования невозобновляемых ресурсов включают:

Для использования этих ресурсов уже существует хорошо развитая технология

Неспособность альтернатив для обеспечения базовой нагрузки мощности для бытового и промышленного использования

Стоимость является относительно низкой для выработки электричества с невозобновляемых ресурсов.

Солнечные космические электростанции.

Получать и использовать «чистую» солнечную энергию на поверхности  Земли мешает атмосфера, поэтому появляются проекты размещения  солнечных электростанций в космосе, на околоземной орбите. У таких станций  есть несколько достоинств: невесомость позволяет создать  многокилометровые конструкции, которые необходимы для получения энергии; преобразование одного вида энергии в другой неизбежно сопровождается  выделением тепла, и сброс его в космос позволит предотвратить опасное перегревание земной атмосферы.

К проектированию солнечных космических электростанций (СКЭС) конструкторы приступили ещё в конце 60-ых годов 20-ого века. Было предложено несколько вариантов транспортировки энергии из космоса на Землю, но наиболее рациональным было признано предложение использовать её  на месте выработки, для этого необходимо перенести основных потребителей электроэнергии (металлургия, машиностроение, химическая промышленность) на спутник Земли Луну или астероиды. Любой вариант СКЭС предполагает, что это колоссальное сооружение, причём не одно. Даже самая маленькая СКЭС должна весить десятки тысяч тонн. Современные средства выведения в состоянии доставить на низкую – опорную орбиту необходимое количество блоков, узлов и панелей солнечных батарей.

Строительство солнечных космических электростанций сейчас кажется фантастикой, но в скором времени, возможно, появится  первая СКЭС, которая даст начало новому уровню развития энергетики.

Страницы истории

Электроэнергия — это явление, которое пытались объяснить уже во времена существования Древней Греции. Философы, жившие в седьмом веке до нашей эры, выяснили, что при натирании янтаря о натуральную шерсть он приобретает способность притягивать к себе различные предметы.

В семнадцатом веке немцем Отто фон Герике была создана электростатическая машина, состоящая из серного шара, насаженного на металлический стержень. Подобное сооружение позволило ему наблюдать не только притяжение предметов, но и их отталкивание.

В конце восемнадцатого века англичанином Стивеном Греем была проведена серия экспериментов по передаче электрической энергии на определенное расстояние. Ему удалось выяснить, что в зависимости от состава материала меняется способность проводить электрический ток.

Что представляет собой электроэнергия? Понятие, суть данного физического явления были объяснены французом Шарлем Дюфе. В ходе различных экспериментов он получил смоляное и стеклянное электричество, появляющиеся во время трения об шелк стекла, смолы об шерсть. В середине восемнадцатого века Питером ван Мушенбруком разрабатывается электрический конденсатор, названный Лейденской банкой. Параллельно эксперименты, касающиеся изучения атмосферного электричества, проводились русским ученым М. В. Ломоносовым.

В конце восемнадцатого века Кулон открыл закон, согласно которому электроэнергия — это движение заряженных частиц.

В начале девятнадцатого века физиком Эрстедом было выявлено электромагнитное взаимодействие. Он размыкал и замыкал цепь, наблюдая колебания стрелки компаса, находящегося около проводника с током. Ампер выяснил, что магнетизм и электричество связаны в случаях, когда отсутствует статическое электричество.

Фарадей, используя результаты экспериментов Ампера и Эрстеда, открыл явление электромагнитной индукции. Именно им был разработан генератор электрической энергии, состоящий из намагниченного сердечника, катушки.Через него проходила электроэнергия. Значение слова после проведения экспериментов стали связывать с движением заряженных частиц.

Работы Максвелла стали венцом всех электромагнитных явлений. В двадцатом веке появилась квантовая теория электродинамики. Она ответила на все вопросы, которые оставались у ученых на тот промежуток времени.

Парниковый эффект.

Есть несколько точек зрения на эту проблему. Согласно недавним решениям ООН для улучшения климата Земли наиболее развитый государства, такие как США, Япония  и страны Европейского союза, обязаны сократить к 2012 году объём выброса тепличных газов на 6% по сравнению с 1990 годом. Однако многие специалисты считают, что и этого недостаточно. Они настаивают  на 60%,  по их мнению, в борьбу должны включиться не только развитые страны, но и все остальные. Но есть и другая точка зрения: В 1997 году почти 1700 американских учёных подписали обращение к президенту страны, где поставили под сомнение сам подход к решению проблемы. Выбрасываемый промышленностью углекислый газ практически не влияет на климат, считают они. Вулканические извержения, другие природные катаклизмы поставляют подобных соединений куда больше

Например, учёные обратили внимание, что из подпочвенных слоёв тундры в последнее время стало выделяться больше углекислого газа и метана, чем прежде, а по оценкам учёных здесь содержится примерно треть всех земных  углесодержащих газов. Было установлено, что с каждого кв

метра тундры вода уносит 5 граммов углесодержащих веществ, примерно половина из них растворяется в реках, озёрах, ручьях, а затем поступает в атмосферу, остальные уходят в Северный Ледовитый океан. Средняя температура поверхности Земли за последний год поднялась на полградуса, но, по словам экспертов, им потребуется несколько лет,

чтобы определить, свидетельствуют ли данные показатели об ускорении глобального потепления. По мнению учёных, парниковых эффект – результат того, что климат Земли постоянно меняется. Возможно, сейчас происходит потепление, так как заканчивается последний ледниковый период, а колебания климата связаны с солнечной активностью, появлением пятен, увеличением излучаемого тепла. Опасности, связанные с повышением концентрации углекислого газа в атмосфере состоят в повышении температуры Земли. Но общепринятые оценки метеорологов показывают, что повышение  содержания углекислого газа в атмосфере приведёт к повышению температуры практически только в высоких широтах, особенно в Северном полушарии, причём в основном это потепление произойдёт зимой. По оценки специалистом Института сельхозметеорологии Роскомгидромета повышение концентрации этого газа в атмосфере в два раза приведёт к удвоению полезной сельскохозяйственной площади России, с 5 до 11 млн. кв. километров. В различных источниках также указываются  возможные повышения уровня Мирового океана в пределах от 0,2 до 1,4м, многие утверждают, что скоро нас ожидает великий потоп. Но почти все ледники Северного полушария растаяли около 9 тысяч лет назад, осталась только Гренландия. Но и она вместе  со льдами Северного Ледовитого океана не повысит при таянии уровень Мирового океана даже на 1мм.

Виды вторичной энергии

Модель вторичной энергии  в качестве промежуточного шага лучше всего работает с электричеством.

Электричество

Электричество – это гибкий, легкий в использовании и транспортировке ресурс. Электричество никогда не закончится, потому что электроны не расходуются; они просто выполняют работу двигаясь. Больше ресурсов всегда можно вкладывать в одни и те же электроны снова и снова, и извлекать, чтобы использовать для большего количества энергетических услуг.

Электричество гораздо более гибко, чем другой источник. Когда электрический чайник кипятит воду, вода кипит одинаково, будь то используется уголь, природный газ, ядерная, биомасса, ветер или гидро. Электричество можно  использовать почти везде.  Такая гибкость использования означает, что в целом количество используемой в мире вторичной энергии растет быстрее, чем потребление первичной . Другими словами, растет процент потребления энергии, которая идет на электроэнергию (потребление электроэнергии растет быстрее, чем другие виды).

Использование молекулярного водорода

Многие люди говорят об использовании молекулярного водорода в качестве источника вторичной энергии (это водород как молекула, а не водород как атом), с мыслью о том, что водород станет все более важной энергетической валютой. Топливные элементы считаются ключом к будущему использованию  водорода, поскольку они могут преобразовывать водород непосредственно в электричество

Электричество, бензин и водород получают из первичной энергии, и их легче превратить в полезную работу, чем большинство других ресурсов. Например, кусок угля можно сжечь для освещения дома, но гораздо чище (по крайней мере, для гостиной) сжечь этот кусок угля на электростанции и отправить через электрические сети в дом.

Бензин

Бензин и другие вторичные виды топлива не столь гибки, как электричество, они являются промежуточной формой, которая производится специально для обеспечения легкого использования накопленной химической энергии.

Природный газ

Идея энергетической валюты становится гораздо более интересной с природным газом. Поскольку природный газ может использоваться с минимальной переработкой, его часто считают первичным источником, но поскольку он обеспечивает энергоснабжение, его можно считать энергетической валютой. Природный газ достаточно гибкий и используется для  производства электроэнергии, отопления дома и приготовления пищи. Эта гибкость, безусловно, больше, чем бензин, но поскольку это не промежуточный источник, идея энергетической валюты становится менее ясной.

Ядерное топливо

Еще более туманна идея ядерного топлива как вторичного источника. Конечно, эта форма довольно негибкая; ядерное топливо обычно должно быть помещено в определенный тип ядерного реактора, и не только любой реактор будет делать! Это означает, что эта промежуточная форма обычно не считается энергетической валютой.

Во всем мире все больше ресурсов превращается во вторичную энергию насколько она полезнее первичной.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector