Му 2.6.5.028-2016 определение индивидуальных эффективных и эквивалентных доз и организация контроля профессионального облучения в условиях планируемого облучения. общие требования

Содержание:

Космическая и земная радиация

Космическое излучение делят на галактическое, межгалактическое и солнечное. Их также делят на первичное и вторичное.

Галактическое и межгалактическое космическое излучение — это поток протонов (92 %) и альфа-частиц (7%). Остальное (около 1 %) это в основном ядра легких элементов лития, бериллия, азота, углерода, кислород фтора и др.

Галактическое излучение обладает очень высокой энергией. Считается, что такая большая энергия объясняется разгоном частиц магнитными пол звезд. Такое излучение губительно для всего живого. К счастью, протоны задерживаются радиационными поясами Земли, их энергия несколько уменьшается.

Космические лучи, проходя через атмосферу, вызывают появление космогенных радионуклидов. Наиболее значительные из них тритий, угдлерод-14 , берилий-7, сера-32, натрий-22, 24. Эти радионуклиды распадаясь, испускают бета-частицы. Наиболее опасными из них являются тритий и углерод-14. Оба радионуклида непрерывно возникают и непрерывно распадаются. Существует определенное равновесие в природе и всегда имеется некоторый его запас. Смешиваясь с углеродом и водородом, тритий и углерод-14 попадают в воду, человека, животных, растения и представляют определенную угрозу для жизни и здоровья человека.

Вклад в космическое излучение вносят и вспышки на при которых происходит выброс в космическое пространство протонов . Это явление называется солнечным излучением. Однако по сравнению с галактическим излучением эта энергия незначительна.

В почве, воздухе, воде, живых организмах всегда имеются в незначительных количествах радионуклиды, но больше всего их в гранитах, глиноземах, песчаниках, известняках. Возраст Земли 5,3 млрд. лет, поэтому на Земле сохранились только радионуклиды с большим периодом полураспада, остальные распались.

Газ попадает в воздух, почву, растворяется в воде и попадает, наконец, в организм человека. В РБ газом является радон. Человек половину (54 %) земной радиации получает именно от радона. Радон повсеместно выделяется из земли, воды, стройматериалов. Это бесцветный инертный газ, не имеющий вкуса и запаха, тяжелее воздуха примерно в 7,5 раза. Являясь альфа-излучателем , радон становится причиной заболеваний раком легких, желудка и других органов. Особенно опасен радон для легких, надпочечников, гонад и костного мозга.

Следует помнить, что концентрация радона в закрытых помещениях летом более чем в 8 раз, а в зимнее время — в 5000 раз выше по сравнению с минимальным фоном. Обычно концентрация радона на кухне примерно в 40 раз выше, чем в жилой комнате. Высокое содержание радона в ванной комнате, в спальных помещениях.

Для ослабления воздействия радона на организм человека необходимо проветривать помещения не менее 5 часов в сутки. При проветривании помещений необходимо учитывать, что радон тяжелее воздухи, поэтому выходит из помещения не сразу, непосредственно через форточки, а через некоторое время за счет циркуляции воздуха. Во время кипения воды в чайнике или другой закрытой посуде необходимо открывать на несколько секунд крышку, чтобы радон испарился из воды.

Сушка белья должна быть вне помещений, а после стирки ванная комната должна быть хорошо проветрена. Следует помнить, что и при сжигании газа на кухне также необходимо проветривать помещение, так как из природного газа также выделяется радон. Так как радон являете альфа-излучателем и выделяется в том числе и из стен то их рекомендуется или красить или оклеивать обоями.

Классификация лучевой болезни, в зависимости от доз радиации

Болезнь характеризуют исходя из того, какую дозу ионизирующего облучения получил больной и как долго это происходило. Однократное воздействие приводит к острому состоянию, а постоянно повторяющееся, но менее массивное – к хроническим процессам.

Рассмотрим основные формы лучевой болезни, в зависимости от полученного разового облучения:

  • лучевая травма (менее 1 Зв) – возникают обратимые изменения;
  • костномозговая форма (от 1 до 6 Зв) – имеет четыре степени, в зависимости от полученной дозы. Смертность при таком диагнозе составляет более 50%. Поражаются клетки красного костного мозга. Состояние может улучшить трансплантация. Период восстановления долгий;
  • желудочно-кишечная (10–20 Зв) характеризуется тяжелым состоянием, сепсисом, кровотечениями ЖКТ;
  • сосудистая (20–80 Зв) – наблюдаются гемодинамические нарушения и тяжелая интоксикация организма;
  • церебральная (80 Зв) – летальный исход в течение 1–3 дней вследствие отека мозга.

Шанс на выздоровление и реабилитацию имеют больные с костномозговой формой (в половине случаев). Более тяжелые состояния не подлежат лечению. Смерть наступает в течение нескольких дней или недель.

Надзор и нормативные документы

Надзор в этой сфере осуществляет Роспотребнадзор специальными службами. Контроль за состоянием радиоактивного загрязнения окружающей природной среды осуществляется Федеральной службой России по гидрометеорологии и мониторингу окружающей среды, а за уровнем радиационной безопасности населения — органами Министерства здравоохранения РФ.

В России дозы радиации для человека устанавливает СанПиН 2.6.1.2523-09 «Нормы радиационной безопасности НРБ-99/2009» и ОСПОРБ-99. По ним предельно допустимая доза радиации для человека составляет не более 5 мЗв или 0,5 БЭР, или 0,5 Р в год.

Эффективная доза

Основная статья: Эффективная доза

Эффективная доза (E) — величина, используемая как мера риска возникновения отдалённых последствий облучения всего тела человека и отдельных его органов и тканей с учётом их радиочувствительности. Она представляет сумму произведений эквивалентной дозы в органах и тканях на соответствующие взвешивающие коэффициенты.

Одни органы и ткани человека более чувствительны к действию радиации, чем другие: например, при одинаковой эквивалентной дозе возникновение рака в лёгких более вероятно, чем в щитовидной железе, а облучение половых желез особенно опасно из-за риска генетических повреждений. Поэтому дозы облучения разных органов и тканей следует учитывать с разным коэффициентом, который называется взвешивающим коэффициентом ткани. Умножив значение эквивалентной дозы на соответствующий взвешивающий коэффициент и просуммировав по всем тканям и органам, получим эффективную дозу, отражающую суммарный эффект для организма. Взвешивающие коэффициенты устанавливают эмпирически и рассчитывают таким образом, чтобы их сумма для всего организма составляла единицу.

Единицы измерения эффективной дозы совпадают с единицами измерения эквивалентной дозы. Она также измеряется в зивертах или бэрах.

Ожидаемая эффективная доза E(τ) — доза внутреннего облучения от поступивших в организм человека радионуклидов. Время облучения человека такими радионуклидами определяется периодами их полураспада и биологического удержания в организме и может составлять многие месяцы и даже годы. Для целей регулирования полный период накопления дозы устанавливается равным 50 лет для взрослого человека или, если оценивается доза для детей, до достижения 70 лет. При оценке годовой дозы ожидаемая эффективная доза суммируется с эффективной дозой от внешнего облучения за этот же период.

Эффективная и эквивалентная дозы — это нормируемые величины, то есть, величины, являющиеся мерой ущерба (вреда) от воздействия ионизирующего излучения на человека. К сожалению, они не могут быть непосредственно измерены. Поэтому в практику введены операционные дозиметрические величины, однозначно определяемые через физические характеристики поля излучения в точке, максимально возможно приближенные к нормируемым.
Основной операционной величиной является амбиентный эквивалент дозы (синонимы — эквивалент амбиентной дозы, амбиентная доза).

Амбиентный эквивалент дозы Н*(d) — эквивалент дозы, который был создан в шаровом фантоме МКРЕ (международной комиссии по радиационным единицам) на глубине d (мм) от поверхности по диаметру, параллельному направлению излучения, в поле излучения, идентичном рассматриваемому по составу, флюенсу и энергетическому распределению, но мононаправленном и однородном, то есть амбиентный эквивалент дозы Н*(d) — это доза, которую получил бы человек, если бы он находился на месте, где проводится измерение.
Единица амбиентного эквивалента дозы — зиверт (Зв).

Поглощенное количество

Поглощенная доза из-ния, как четкое определение, стало необходимым человеку в связи с разнообразием возможных форм воздействия того или иного излучения на ткани живых существ и даже неживых структур. Расширяясь, известный круг ионизирующих видов и-ния, показал что, степень влияния и воздействия может быть самой разнообразной и не подлежит обычному определению. Дать начало химико-физическим изменениям в тканях и вещества, подвергаемых облучению, может лишь конкретное количество поглощенной энергии излучения ионизирующего типа. Само число необходимое для запуска таких изменений зависит уже от вида излучения. Поглощенная доза и-ния возникла именно по этой причине. По сути, это энергетическая величина, которая подверглась поглощению единицей вещества и соответствует отношению энергии ионизирующего типа, что была поглощена и массой субъекта или объекта, поглощающего излучение.

Измеряют поглощенную дозу при помощи единицы грей (Гр) – составной части системы Си. Один грей – это величина дозы, способной передать один джоуль ионизирующего излучения 1 килограмму массы. Рад – внесистемная единица измерения, по величине 1 Гр соответствует 100 рад.

Допустимые дозы радиации

  • допустимый уровень радиоактивного излучения от естественных источников излучения, иначе говоря естественный радиоактивный фон, в соответствии с нормативными документами, может быть в течении пяти лет подряд не выше чем

    0,57 мкЗв/час

В последующие года, радиационный фон должен быть не выше  0,12 мкЗв/час

предельно допустимой суммарной годовой дозой, полученной от всех техногенных источников, является

1 мЗв/год

Величина 1 мЗв/год, суммарно должна включать в себя все эпизоды техногенного воздействия радиации на человека. Сюда входят все типы медицинских обследований и процедур, включает флюорографию, рентген зуба и так далее. Так же сюда относятся полеты на самолетах, прохождение через досмотр в аэропорту, получение радиоактивных изотопов с пищей и так далее.

Измерение радиации в квартире

Уровень радиации в помещении не должен превышать 0,25 мкЗв/час. Безопасным считаются помещение, в которых содержание радона не более 100 Бк на кубометр. При этом в производственных помещениях он может составлять до 300 Бк и 0,6 микроЗиверт.

Если нормы превышены, то принимаются меры к их снижению. При невозможности это сделать жильцы должны быть переселены, а помещение перепрофилировано в нежилое или идти под снос.

В СанПиН указано содержание тория, урана и калия-40 используемых на строительстве для возведения жилья. Общая доза от стеновых и отделочных материалов не должна быть выше 370 Бк/кг.

Что такое радиация

Радиация — это вид излучения заряженными частицами. Такое излучение, воздействуя на окружающие предметы, ионизирует вещество. В случае с человеком она не только ионизирует клетки, но и разрушает их или вызывает раковые заболевания.

Большинство элементов таблицы Менделеева инертны и безвредны, но некоторая часть имеет нестабильное состояние. Не вдаваясь в подробности описать её, можно так. Атомы некоторых веществ из-за непрочных внутренних связей распадаются. Это распад сопровождается выбросом альфа, бета-частиц и гамма-излучением.

Такой выброс сопровождается высвобождением энергии с различной проникающей способностью и оказывающем разное воздействие на ткани организма.

Как именно радиация влияет на клетки?

Ряд химических соединений обладает свойством радиационного излучения. Происходит активное деление ядер атомов, что приводит к высвобождению большого количества энергии. Эта сила способна буквально вырывать электроны от атомов клеток вещества. Сам процесс получил название ионизации. Атом, который подвергся такой процедуре, изменяет свои свойства, что приводит к изменению всего строения вещества. За атомами меняются молекулы, за молекулами общие свойства живой ткани. С возрастанием уровня облучения увеличивается и количество измененных клеток, что приводит к более глобальным переменам. В связи с чем и были высчитаны допустимые дозы облучения для человека. Дело в том, что изменения в живых клетках затрагивают и молекулу ДНК. Иммунная система активно восстанавливает ткани и даже способна «починить» поврежденную ДНК. Но в случаях значительного облучения или нарушения защитных сил организма развиваются заболевания.

С точностью предположить вероятность развития болезней, возникающих на клеточном уровне, при обычном поглощении радиации сложно. Если же эффективная доза облучения (это около 20 мЗв в год для работников промышленности) превышает рекомендуемые показатели в сотни раз, общее состояние здоровья значительно снижается. Иммунная система дает сбои, что влечет за собой развитие различных заболеваний.

Огромные дозы радиации, которые могут быть получены вследствие аварии на АЭС или взрыва атомной бомбы, не всегда совместимы с жизнью. Ткани под воздействием измененных клеток погибают в большом количестве и просто не успевают восстановиться, что влечет за собой нарушение жизненно важных функций. Если часть тканей сохранится, то у человека будет шанс на выздоровление.

Эквивалентная доза (биологическая доза)

Основная статья: Эквивалентная доза

Изучение отдельных последствий облучения живых тканей показало, что при одинаковых поглощённых дозах различные виды радиации производят неодинаковое биологическое воздействие на организм. Обусловлено это тем, что более тяжёлая частица (например протон) производит на единице длины пути в ткани больше ионов, чем лёгкая (например электрон). При одной и той же поглощённой дозе радиобиологический разрушительный эффект тем выше, чем плотнее ионизация, создаваемая излучением. Чтобы учесть этот эффект, введено понятие эквивалентной дозы. Эквивалентная доза рассчитывается путём умножения значения поглощённой дозы на специальный коэффициент — взвешивающий коэффициент излучения, учитывающий относительную биологическую эффективность различных видов радиации.

Единицей измерения эквивалентной дозы в СИ является зиверт (Зв). Величина 1 Зв равна эквивалентной дозе любого вида излучения, поглощённой в 1 кг биологической ткани и создающей такой же биологический эффект, как и поглощённая доза в 1 Гр фотонного излучения. Внесистемной единицей измерения эквивалентной дозы является бэр (до 1954 года — биологический эквивалент рентгена, после 1954 года — биологический эквивалент рада). 1 Зв = 100 бэр.

Мощность экспозиционной дозы

В биологическом отношении важно знать не просто дозу ионизирующего
излучения, но и время, за которое она получена. Доза, полученная в единицу времени,
называется мощностью дозы

Чем больше мощность дозы, тем быстрее растет доза
излучения.

Для экспозиционной дозы в СИ единица мощности дозы – ампер на
килограмм (А/кг), внесистемная единица – рентген в секунду (Р/с). На практике чаще
всего используются ее производные (мкР/час, мР/час и т.д.)

Удельная поверхностная активность радионуклида

Для характеристики радиоактивного загрязнения территории используют
основные единицы активности, отнесенные к площади:

Этими единицами измеряют плотность радиоактивного загрязнения,
например плотность загрязнения Cs-137.

Допустимые и смертельные дозы для человека

См. также: НРБ-99

Миллизиверт (мЗв) часто используется как мера дозы при медицинских диагностических процедурах (рентгеноскопия, рентгеновская компьютерная томография и т. п.).

Согласно постановлению главного государственного санитарного врача России за № 11 от 21 апреля 2006 г. «Об ограничении облучения населения при проведении рентгенорадиологических медицинских исследований», п. 3.2, необходимо «обеспечить соблюдение годовой эффективной дозы 1 мЗв при проведении профилактических медицинских рентгенологических исследований, в том числе при проведении диспансеризации». Среднемировая доза облучения от рентгенологических исследований, накопленная на душу населения за год, равна 0,4 мЗв, однако в странах с высоким уровнем доступа к медобслуживанию (более одного врача на 1000 человек населения) этот показатель растёт до 1,2 мЗв. Облучение от других техногенных источников значительно меньше: 0,005 мЗв от радионуклидов, оставшихся от атмосферных ядерных испытаний, 0,002 мЗв от Чернобыльской катастрофы, 0,0002 мЗв от ядерной энергетики.

Среднемировая доза облучения от естественных источников, накопленная на душу населения за год, равна 2,4 мЗв, с разбросом от 1 до 10 мЗв. Основные компоненты:

  • 0,4 мЗв от космических лучей (от 0,3 до 1,0 мЗв, в зависимости от высоты над уровнем моря);
  • 0,5 мЗв от внешнего гамма-излучения (от 0,3 до 0,6 мЗв, в зависимости от радионуклидного состава окружения — почвы, стройматериалов и т. п.);
  • 1,2 мЗв внутреннего облучения от ингалируемых атмосферных радионуклидов, главным образом радона (от 0,2 до 10 мЗв, в зависимости от местной концентрации радона в воздухе);
  • 0,3 мЗв внутреннего облучения от инкорпорированных радионуклидов (от 0,2 до 0,8 мЗв, в зависимости от радионуклидного состава пищевых продуктов и воды).

При однократном равномерном облучении всего тела и неоказании специализированной медицинской помощи смерть в результате острой лучевой болезни наступает в 50 % случаев:

  • при дозе порядка 3—5 Гр из-за повреждения костного мозга в течение 30—60 суток;
  • 10 ± 5 Гр из-за повреждения желудочно-кишечного тракта и лёгких в течение 10—20 суток;
  • > 15 Гр из-за повреждения нервной системы в течение 1—5 суток.

Измерение ионизирующих излучений

С открытием радия было обнаружено, что излучение радиоактивных веществ влияет на живые организмы и вызывает биологические эффекты, сходные с действием рентгеновского облучения. Появилось такое понятие, как доза ионизирующего излучения – величина, которая позволяет оценивать воздействие радиационного облучения на организмы и вещества. В зависимости от особенностей облучения, выделяют эквивалентную, поглощенную и экспозиционную дозы:

  1. Экспозиционная доза – показатель ионизации воздуха, возникающей под действием гамма- и рентгеновских лучей, определяется количеством образовавшихся ионов радионуклидов в 1 куб. см. воздуха при нормальных условиях. В системе СИ она измеряется в кулонах (Кл), но существует и внесистемная единица – рентген (Р). Один рентген – большая величина, поэтому удобнее на практике использовать ее миллионную (мкР) или тысячную (мР) доли. Между единицами экспозиционной дозы установлено следующее соотношения: 1 Р = 2, 58.10-4 Кл/кг.
  2. Поглощенная доза – энергия альфа-, бета- и гамма-излучения, поглощенная и накопленная единицей массы вещества. В международной системе СИ для нее введена следующая единица измерения – грей (Гр), хотя до сих пор в отдельных областях, например в радиационной гигиене и в радиобиологии широко используется внесистемная единица – рад (Р). Между этими величинами имеется такое соответствие: 1 Рад = 10-2 Гр.
  3. Эквивалентная доза – поглощенная доза ионизирующего излучения, учитывающая степень его воздействия на живую ткань. Поскольку одинаковые дозы альфа-, бета- или гамма-излучения оказывают разный биологический ущерб, введен так называемый КК –коэффициент качества. Для получения эквивалентной дозы необходимо поглощенную дозу, полученную от определенного вида излучения, умножить на этот коэффициент. Измеряется эквивалентная доза в берах (Бэр) и зивертах (Зв), обе эти единицы взаимозаменяемы, переводятся из одной в другую таким образом: 1 Зв = 100 Бэр (Рем).

В системе СИ используется зиверт – эквивалентная доза конкретного ионизирующего излучения, поглощенная одним килограммом биологической ткани. Для пересчета греев в зиверты следует учесть коэффициент относительной биологической активности (ОБЭ), который равен:

  • для альфа-частиц – 10-20;
  • для гамма- и бета-излучения – 1;
  • для протонов – 5-10;
  • для нейтронов со скоростью до 10 кэВ – 3-5;
  • для нейтронов со скоростью больше 10 кэВ: 10-20;
  • для тяжелых ядер – 20.

Бэр (биологический эквивалент рентгена) или рем (в английском языке rem – Roentgen Equivalent of Man) – внесистемная единица эквивалентной дозы. Поскольку альфа-излучение наносит больший ущерб, то для получения результата в ремах, необходимо измеренную радиоактивность в радах умножить на коэффициент, равный двадцати. При определении гамма- или бета-излучения перевод величин не требуется, поскольку ремы и рады равны друг другу.

Основные радиологические величины и единицы
Величина Внесистемные Си Соотношения между единицами
Активность нуклида, А Кюри (Ки, Ci) Беккерель (Бк, Bq) 1 Ки = 3.7·1010Бк
1 Бк = 1 расп/с
1 Бк=2.7·10-11Ки
Экспозицион-
ная доза, X
Рентген (Р, R) Кулон/кг
(Кл/кг, C/kg)
1 Р=2.58·10-4 Кл/кг
1 Кл/кг=3.88·103 Р
Поглощенная доза, D Рад (рад, rad) Грей (Гр, Gy) 1 Гр=1 Дж/кг
Эквивалентная доза, Н Бэр (бэр) Зиверт (Зв, Sv) 1 бэр=10-2 Зв
1 Зв=100 бэр
Интегральная доза излучения Рад-грамм (рад·г, rad·g) Грей- кг (Гр·кг, Gy·kg) 1 рад·г=10-5 Гр·кг
1 Гр·кг=105 рад·г

Групповые дозы

Подсчитав индивидуальные эффективные дозы, полученные отдельными людьми, можно прийти к коллективной дозе — сумме индивидуальных эффективных доз в данной группе людей за данный промежуток времени. Коллективную дозу можно подсчитать для населения отдельной деревни, города, административно-территориальной единицы, государства и т. д. Её получают путём умножения средней эффективной дозы на общее количество людей, которые находились под воздействием излучения. Единицей измерения коллективной дозы является человеко-зиверт (чел.-Зв.), внесистемная единица — человеко-бэр (чел.-бэр). Коллективная доза может накапливаться в течение длительного времени, даже не одного поколения, а охватывая последующие поколения.

Кроме того, выделяют следующие дозы:

  • пороговая — доза, ниже которой не отмечены проявления данного эффекта облучения.
  • предотвращаемая — прогнозируемая доза вследствие радиационной аварии, которая может быть предотвращена защитными мероприятиями.
  • удваивающая — доза, которая увеличивает в 2 раза (или на 100%) уровень спонтанных мутаций. Удваивающая доза обратно пропорциональна относительному мутационному риску.
  • минимально летальная — минимальная доза излучения, вызывающая гибель всех облучённых объектов.

В чем измеряют излучение?

Во Всемирной паутине можно найти немало литературы, посвященной радиоактивному излучению. Практически в каждом источнике встречаются числовые показатели норм облучения и следствия их превышения. Разобраться в непонятных единицах измерения удается не сразу. Изобилие информации, характеризующей предельно допустимые дозы облучения населения, могут легко запутать и знающего человека. Рассмотрим понятия в минимальном и более понятном объеме.

В чем измеряют радиационное излучение? Список величин весьма внушителен: кюри, рад, грэй, беккерель, бэр — это только основные характеристики дозы облучения. Зачем так много? Их применяют для определенных областей медицины и охраны окружающей среды. За единицу воздействия радиации на какое-либо вещество принимают поглощенную дозу – 1 грэй (Гр), равный 1 Дж/кг.

При воздействии излучения на живые организмы говорят об эквивалентной дозе. Она равна поглощенной тканями организма дозе в перерасчете на единицу массы, умноженной на коэффициент повреждения. Константа выделена для каждого органа своя. В результате вычислений получается число с новой единицей измерения – зиверт (Зв).

На основании уже полученных данных о влиянии принятого излучения на ткани определенного органа определяется эффективная эквивалентная доза облучения. Этот показатель вычисляется при помощи умножения предыдущего числа в зивертах на коэффициент, который учитывает разную чувствительность тканей к радиоактивному излучению. Его значение позволяет оценить с учетом биологической реакции организма количество поглощенной энергии.

Материалы с повышенной радиоактивностью

При строительстве в советское время все материалы проходили проверку по ГОСТ. Поэтому разговоры о том что «хрущёвские» пятиэтажки имеют радиоактивность, не более чем миф. Основным источником радиации в квартире или любом другом помещении является газ радон.

Он относится к естественным источникам радиации, так как присутствует в земной коре и выделяется в окружающую среду, внося свою долю в общий радиационный фон. Проникая в помещение через фундамент и полы, он накапливается , увеличивая нормальный радиоактивный фон. Поэтому не стоит делать помещения слишком герметичными. Дополнительным источником поступления радона в дом является вода поступающая из артезианских скважин и газ.

Средняя радиоактивность некоторых строительных материалов

Основные строительные материалы: бетон, кирпич и дерево не представляют опасности и являются самыми безвредными. Однако в строительстве и в быте мы используем материалы, выделяющие довольно большое количество радона. К ним относятся:

  • пемза;
  • гранит;
  • туф;
  • графит.

Все материалы залегающие или добытые из земной коры могут иметь повышенный уровень радиации. Поэтому неплохо контролировать её самостоятельно.

Нормы для человека

За длительные годы исследования радиации были определены безопасные и максимальные дозы. К сожалению, не только опытным путём, но и на практике. Такие события, как Хиросима и Чернобыль не прошли даром для планеты. Годы наблюдений за излучением показали, что превышение допустимой дозы радиации оставляет отпечаток на всех последующих поколениях.

Физические величины в которых измеряется радиация

Радиационный фон

С момента зарождения земли прошло 4,5 миллиарда лет, за это время радиоактивность, которая во время её формирования была просто гигантской, сошла почти на нет. Существующий естественный фон, который в нашей стране составляет 4–15 мкР в час, складывается из нескольких составляющих. Это:

  • Природный, до 83%. Остаточная радиация от природных источников — газов, минералов.
  • Космическое излучение — 14%. Мощнейшим источником излучения является солнце. При уменьшении магнитного поля земли общий фон увеличится, что может привести к увеличению раковых заболеваний и мутаций. Второй фактор, снижающий излучение – это атмосфера. Летающие на самолётах и альпинисты получают повышенную дозу.
  • Техногенное – от 3 до 13%. С первого атомного взрыва прошло 75 лет. За время испытаний атомного оружия в атмосферу было выброшено огромное количество радиоактивных веществ. Кроме этого, техногенные аварии — Чернобыль, Фукусима. Добыча и транспортировка таких веществ, а также работающие АЭС. Всё вносит вклад в общий фон.

Доза радиации которую получает человек в течении года

Норма радиационного фона является значение до 0,20 мкЗв/час или 20 мкР/час. Допустимый фон считается уровень до 60 мкР/час или 0,6 мЗв. Для каждой страны он устанавливается свой, например, в Бразилии безопасный радиоактивный фон составляет 100 мкР в час.

Безопасная доза

Безопасной дозой радиации для человека является уровень, при котором можно жить и работать без последствий для организма. Этот уровень определён до 30 мкР/ч (0,3 мкЗв/час).

Допустимая доза

Допустимая доза радиации несколько больше безопасной и показывает уровень, при котором на организм оказывается воздействие радиации, но без негативных последствий для здоровья.

Допустимый уровень в год предполагает до 1 мЗв. Если это значение поделить на часы, то получим 0,57 мкЗв/ч.

Эта доза применяется и для расчёта среднего значения полученного излучения за несколько лет. Например, человек за 5 лет подряд должен получить 5 мЗв, но работая на вредном производстве, получил годовую в 3 мЗв. Следующие 4 года он не должен получить более 1 мЗв, чтобы выровнять значения и уменьшить риск заработать лучевую болезнь.

При полётах на высоте выше 10 км уровень излучения будет до 3 мкЗв/ч, что превышает норму в 10 раз. Получается, что за 4 часа можно получить максимальную, суммарную дозу до 12 мкЗв.

Излучение которое можно полечить в полёте

Смертельный уровень облучения

Опасной дозой можно принять уровень в 0,75 Зв. При таком значении происходит изменение в крови человека и хоть не бывает смертельных исходов сразу, но в будущем вероятность раковых заболеваний довольно высока.

Как уже было замечено выше органы (печень, лёгкие, желудок, кожа) неравномерно воспринимают излучение. Лучевая болезнь начинается с дозы в 1–2 Зиверт и для некоторых это уже смертельная доза. Другие с лёгкостью перенесут заражение и выздоровеют.

Если исходить из статистики, то смертельной будет доза выше 7 Зиверт или 700 рентген.

Доза. Зиверт Воздействие на человека
1–2 Лёгкая форма лучевой болезни.
2–3 Лучевая болезнь. Смертность в течение первого месяца до 35%.
3–6 Смертность до 60%.
6–10 Летальный исход 100% в течение года.
10–80 Кома, смерть через полчаса
80 и более Мгновенная смерть

Виды радиации

Существует несколько видов радиоактивности, которые можно разделить на неопасные, малоопасные и опасные. Подробно останавливаться на них не будем скорее это для понимания с, чем можно столкнуться в помещении. Итак, это:

  1. альфа (α) излучение;
  2. бета (β) излучение;
  3. гамма (γ) излучение;
  4. нейтронное;
  5. рентгеновское.

Альфа-излучение, бета и нейтронное представляют собой облучение частицами. Гамма и рентгеновское — это электромагнитное излучение.

В быту вам вряд ли предстоит встретиться с рентгеновским и нейтронным, так как они специфичны, а вот с остальными можно. Каждое из этих видов излучений имеет разную степень опасности, но, кроме этого, должно учитываться, какое количество облучения получил человек.

Виды доз радиации и что такое мощность эквивалентной дозы

Понятие дозы введено для оценки степени воздействия ионизационного  облучения на различные объекты. Чтобы определить интенсивность допустимых доз облучения ввели понятие мощности дозы.

  • Экспозиционная доза. Количество положительных ионов рентгеновских и гамма лучей в определённом объёме воздухе, принято называть экспозиционной дозой. Системной единицей измерений является кулон деленный на килограмм (Кл/Г), а не системной единицей  Рентген (Р). 1 Кл/Г = 3876 Р.
  • Поглощённая доза. Количество полученной энергии радиоактивного излучения на единицу массы облучаемого вещества называют поглощённой дозой. Системной единицей измерения является в Грей (Гр), а не системной Рад. 1 Гр = 100 рад.
  • Эквивалентная доза. Понятие эквивалентной дозы показывает поглощённую дозу ионизирующего излучения, скорректированную коэффициентом относительной биологической эффективности различных видов радиоактивных излучений. Системно единицей измерения является Зиверт (Зв), а не системной Бэр (бэр). 1 Зв = 100 бэр.
  • Эффективная доза. Различные ткани организма имеют разную чувствительность к облучению. Поэтому для расчёта эффективной дозы добавили коэффициент радиационной опасности. Измеряется также как и эквивалентная доза в Зивертах (Зв).
  • Мощность эквивалентной дозы. Доза облучения, полученная организмом в определённый отрезок времени (например, в течение часа), называется мощностью дозы. Мощность рассчитывается как отношение дозы ко времени воздействия и измеряется в Рентген в час, Зиверт в час и Грей в час. Бытовые дозиметры обычно измеряют мощность эквивалентной дозы (микроЗиверт в час) или мощность экспозиционной дозы (микроРентген в час). Соотношение запомнить несложно — один Зиверт это сто Рентген.

Допустимая доза облучения или безопасная мощность дозы

Допустимые дозы облучения (уровень мощности естественного фона) от 0,05 мкЗв/час до 0,5 мкЗв/час безвредны. Но при постоянном попадании в организм человека радона возрастает риск различных заболеваний, в том числе раком. Поэтому помещения необходимо проветривать. При строительстве дома или ремонте квартиры нужно проверять применяемые стройматериалы бытовым дозиметром или индикатором радиоактивности.

Человеческая деятельность увеличивает естественную радиоактивность природы. И это не только ядерное оружие или атомная промышленность. Обычное сжигание газа, нефти или каменного угля изменяет радиационный фон. Допустимые дозы облучения значительно превышены в районах нефтескважин. На грунте около скважин и на бурильном оборудовании откладываются небезопасные соли тория 232, радия 226 и калия 40. Поэтому отработанные трубы считаются радиоактивными отходами и должны утилизироваться специальным образом.

Смертельная доза облучения

Опасность получения смертельной дозы облучения в основном появляется при техногенных авариях или при неправильном хранении радиоактивных отходов. Смертельная доза радиации начинается с 6-7 Зв в час и более. Но даже в небольшой степени, но постоянно повышенный радиационный фон может вызвать мутацию клеток. Риск возникновения онкологических заболеваний можно снизить, используя бытовые дозиметры. Радионуклиды имеют свойство накапливаться. Поэтому следует регулярно проверять окружающий радиационный фон, строительные материалы, природные источники воды.

Разовые дозы облучения человека

Значительное увеличение радиационного фона приводит к более серьезным повреждениям тканей, в связи с чем начинают неправильно функционировать или вовсе отказывать органы. Критическое состояние возникает лишь при получении огромного количества ионизирующей энергии. Незначительное превышение рекомендуемых доз может привести к заболеваниям, которые могут быть вылечены.

Превышающие норму дозы облучения и последствия

Разовая доза (мЗв)

Что происходит с организмом

До 25

Изменений в состоянии здоровья не наблюдаются

25–50

Снижается общее количество лимфоцитов (снижается иммунитет)

50–100

Значительное снижение лимфоцитов, признаки слабости, тошнота, рвота

150

В 5% случаев смертельный исход, у большинства наблюдается так называемое лучевое похмелье (признаки схожи с алкогольным похмельем)

250–500

Изменения в крови, временная мужская стерилизация, 50% смертности в течение 30 дней после облучения

Более 600

Смертельная доза облучения, не подлежит лечению

1000–8000

Наступает кома, смерть в течение 5–30 минут

Более 8000

Мгновенная смерть от луча

Разовое получение большого количество радиационного излучения негативно влияет на состояние организма: клетки стремительно разрушаются, не успевая восстановиться. Чем сильнее воздействие, тем больше возникает очагов поражения.

Защита от радиоактивного излучения

Работая с источниками ионизирующего излучения, требуется принимать меры предосторожности для защиты организма от поражения. Простым, но эффективным способом защиты от излучения является удаление от источника радиации

Во-первых, излучение поглощается воздухом, во-вторых, при удалении от источника интенсивность излучения убывает пропорционально квадрату расстояния

Простым, но эффективным способом защиты от излучения является удаление от источника радиации. Во-первых, излучение поглощается воздухом, во-вторых, при удалении от источника интенсивность излучения убывает пропорционально квадрату расстояния.

При невозможности удаления от источника необходимо использовать другие средства защиты. Одежда из специальных материалов станет преградой на пути радиоактивного излучения.

Веществами, хорошо поглощающими радиацию, являются свинец и графит.

Подводя итоги, можно отметить следующее

  • радиоактивное излучение бывает трех типов: альфа-, бета- и гамма-лучи;
  • сила излучения изменяется в Грэях и Рентгенах;
  • единица эквивалентной дозы — Зиверт.

Радиационное излучение наносит огромный вред организму, но в установленных дозах и при правильном использовании может служить на благо человечества.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector