Смесеобразование и состав горючей смеси

Влияние степени сжатия

При изменении степени сжатия Е изменяется качество подготовленности рабочей смеси к сгоранию. Степень сжатия может быть нарушена неправильно подобранной толщиной прокладки, устанавливаемой между головкой цилиндров и блоком, при срезании плоскости головки цилиндра или поршня, изменении длины шатуна или радиуса кривошипа в процессе ремонта.

Увеличение степени сжатия по сравнению с оптимальным значением сопровождается повышением жесткости работы двигателя и максимального давления сгорания.

Снижение величины Е замедляет процесс сгорания и ухудшает экономичность работы.

Преждевременное воспламенение рабочей смеси

В процессе работы двигателя иногда возникают такие условия, при которых отдельные детали внутри камеры сгорания (электроды свечи зажигания, клапаны) нагреваются выше 700…800°С. Соприкасаясь с нагретыми деталями, рабочая смесь воспламеняется раньше, чем возникает искра зажигания. Сгорание начинается до прихода поршня в в.м.т. Происходит так называемое калильное зажигание. Детали при калильном зажигании нагреваются еще больше. Воспламенение смеси при последующих циклах начинается еще раньше. В результате детали настолько перегреваются, что начинают оплавляться, увеличивается сопротивление их движению, и двигатель теряет мощность. Одной из причин возникновения калильного зажигания является применение свечей зажигания, не соответствующих конструкции двигателя.

Процесс смесеобразования в двигателях автомобилей

В ДВС горючая смесь необходимого состава готовится в карбюраторах или в случае с инжекторной системой питания – рассчитывается электроникой. Смесь, где на 1 кг бензина или другого горючего используется 15 кг воздуха, считается нормальной. В этом режиме двигатель работает достаточно экономно, при этом его мощность находится на высоком уровне. Для экономии количество воздуха в смеси увеличивают. Так, обедненная смесь – это когда на 1 л бензина используется до 15-17 кг воздуха. Расход горючего становится минимальным, а потери мощности составляют всего 8-10 %. Бедная смесь – это когда на 1 л бензина приходится более 17 кг воздуха. На таком составе мотор работает неустойчиво, потребляется большой объем топлива, уменьшается мощность. Это вредно для силового агрегата. Кроме того, такое явление часто ведет за собой пропуски в системе зажигания, задержки при нажатии на педаль акселератора.

Обедненная горючая смесь

Обедненная горючая смесь содержит на 1 кг бензина от 15 до 17 кг воздуха.

Обедненная горючая смесь содержит на 1 кг бензина от 15 до 16 5 кг воздуха. При таком составе происходит полное сгорание топлива, но скорость горения несколько уменьшается, мощность двигателя также несколько снижается, но достигается наибольшая экономия бензина.

В обедненной горючей смеси содержится от 16 5 до 17 кг воздуха на 1 кг бензина. При такой смеси обеспечивается полное сгорание бензина, но скорость сгорания уменьшается и в результате этого мощность двигателя снижается.

Образование обедненной горючей смеси вызывает вспышки ( хлопки) в карбюраторе, снижается развиваемая мощность и приемистость, двигатель перегревается, расход топлива возрастает.

Распределение по высоте топочной камеры падающих лучистых.

Спад, вызванный теплоотдачей обедненной горючей смеси. Таким образом, в силу изложенного, кривые изменения температуры и падающих лучистых потоков по ходу факела приобретают специфический характер и, как правило, имеют четко выраженный максимум, местоположение которого при заданных условиях охлаждения топочных газов зависит от коэффициента избытка воздуха а, реакционной способности топлива и размера частиц.

Стремление повысить экономичность двигателя приводит к использованию обедненных горючих смесей, для надежного воспламенения которых требуется большая длина искрового промежутка свечи. Увеличение этого промежутка с 0 6 — 0 7 до 0 8 — 0 9 и даже до 1 0 мм также вызывает повышение пробивного напряжения.

При сильном нагреве горелки и ( или) обедненной горючей смеси возможен проскок пламени в распылительную камеру со всеми вытекающими последствиями. Разработаны безопасные горелки для пламени ацетилена с воздухом и оксидом диазота. Основная идея заключается в максимальном уменьшении массы металла и площади контакта материала горелки с фронтом горения пламени. Это достигается заменой щели многочисленными отверстиями диаметром 0 7 — 2 мм в тонких выступах длиной до 20 мм.

Индикаторные диаграммы четырехтактного двигателя при различном моменте зажигания смеси.

В целях некоторой экономии топлива стремятся работать на обедненных горючих смесях. Но воспламенение обедненной рабочей смеси искрой более затруднительно, и для надежной бесперебойной работы двигателя увеличивают расстояние между электродами свечи до 0 7 мм и даже до 1 мм вместо 0 5 мм.

Более широкие пределы воспламеняемости газо-воздушных горючих смесей позволяют использовать обедненные горючие смеси на частичных нагрузках, что улучшает топливную экономичность двигателя.

Все жиклеры подобраны так, что до развития скорости движения автомобиля 80 км / ч в карбюраторе приготовляется обедненная горючая смесь. При увеличении нагрузки двигателя и скорости автомобиля выше 80 км / ч вступает в работу вторичная смесительная камера карбюратора. Как только отверстие 40 переходной системы вторичной камеры попадает в зону разрежения, через него начинает поступать эмульсия.

Детонацией называется взрывное сгорание рабочей смеси, возникающее в цилиндрах двигателя при применении бензина с малым октановым числом, обедненной горючей смеси, большом угле опережения зажигания и перегреве двигателя. Вследствие взрывного сгорания смеси резко возрастает давление газов в камере сгорания, что вызывает быстрый износ и даже поломку деталей кривошипно-шатунного механизма. Происходит разрушение подшипников и выгорание днищ поршней. При детонации рабочая смесь не сгорает полностью, что снижает мощность двигателя и вызывает появление хлопков черного дыма из глушителя. Резкое возрастание давления газов вызывает вибрацию стенок цилиндров, а также поршней, что создает звонкие металлические стуки двигателя.

С переходом двигателя в другой режим регулятор поворачивает дроссельную заслонку, увеличивая или уменьшая степень ее открытия и тем самым вызывая образование обогащенной или обедненной горючей смеси.

Таким образом, в корне факела имеет место быстрый подъем температуры, обусловленный интенсивным тепловыделением при горении топлива, а в хвостовой части факела — постепенный спад, вызванный теплоотдачей обедненной горючей смеси.

Строй-Техника.ру

Строительные машины и оборудование, справочник

Категория:

   Автомобили и трактора

Публикация:

   Смесеобразование и состав горючей смеси

Читать далее:

   Простейший карбюратор

Смесеобразование и состав горючей смеси

Процесс смесеобразования заключается в смешивании паров бензина с воздухом в определенном соотношении. Состав смеси можно оценить количеством воздуха, приходящегося на кг топлива.

Приготовление горючей смеси в карбюраторных двигателях начинается в карбюраторе, продолжается во впускном трубопроводе и заканчивается в цилиндре.

В зависимости от соотношения топлива и воздуха различают нормальную, обогащенную, богатую, обедненную и бедную смеси.

Рекламные предложения на основе ваших интересов:

Если количество воздуха в горючей смеси равно теоретически необходимому для полного сгорания содержащегося в нем топлива (а = 1), то такая смесь называется нормальной. Установлено, что для полного сгорания кг бензина требуется 14 кг воздуха. При такой смеси двигатель работает устойчиво со средними показателями по мощности и экономичности.

В обогащенной смеси воздуха содержится на 15—20% меньше, чем в нормальном, при этом а = 0,85—0,8. Такая смесь сгорает быстрее, и двигатель развивает наибольшую мощность при несколько повышенном расходе топлива.

Рис. 51. Схема системы питания автомобильного карбюраторного двигателя и простейшего карбюратора

В богатой смеси воздуха содержится на на 20—60% меньше, чем в нормальной (а = 0,8—0,4). Богатая смесь горит медленно, при этом уменьшается мощность двигателя и значительно увеличивается расход топлива.

В обедненной смеси воздуха содержится на 10—15% больше, чем в нормальной (а – 1,1 —1,15). Она имеет несколько меньшую скорость сгорания, чем обогащенная смесь, двигатель работает более экономично, но развивает меньшую мощность.

В бедной смеси воздуха содержится на 15—30% больше, чем в нормальной (а = 1,15—1,3). Такая смесь горит медленно, и процесс горения может продолжаться весь такт расширения и даже выпуска. Двигатель на бедной смеси работает неустойчиво, мощность его падает, а расход топлива сильно возрастает.

Состав смеси непрерывно меняется в зависимости от режима работы двигателя и автоматически поддерживается карбюратором. Наибольшую мощность двигатель развивает при а — 0,9, а наиболее высокая экономичность достигается при а = 1,1.

Не любая горючая смесь способна воспламеняться; очень бедная и очень богатая смеси теряют способность гореть. Наибольший коэффициент избытка воздуха, при котором еще возможно воспламенение смеси, называется нижним пределом воспламенения (а 1,3—1,4), а наименьший коэффициент избытка воздуха, при котором возможно воспламенение смеси, — верхним пределом воспламенения (а 0,4). Следовательно, бензовоздушная смесь способна гореть в пределах изменения а от 0,4 до 1,4.

При обычном сгорании смеси фронт пламени распространяется со скоростью 20—30 м/с. Ненормальным явлением процесса сгорания является быстрое сгорание, подобное взрыву, при котором скорость распространения фронта пламени достигает 2000—2500 м/с. Внешними признаками этого детонационного сгорания являются резкие механические стуки в цилиндре, перегрев двигателя, черный дым из глушителя, понижение мощности и экономичности.

Основные причины детонации — несоответствие сорта топлива степени сжатия двигателя, раннее зажигание, большие нагрузки при малой частоте вращения коленчатого вала двигателя и др.

Детонационная стойкость топлива оценивается октановым числом. Октановым числом топлива называются содержание изооктана в такой смеси с гептаном, которая по детонационной стойкости равноценна испытываемому топливу. Чем выше октановое число топлива, тем больше его стойкость против детонации.

В соответствии с ГОСТ 2084—77 выпускают следующие сорта автомобильных бензинов А-72, А-76, АИ-93, АИ-98 и др. Буква «А» означает, что бензин автомобильный, а стоящие при ней цифры соответствуют октановому числу, которое характеризует стойкость бензина против детонации. В обозначении некоторых бензинов буква «И» показывает, что октановое число определено по исследовательскому, а не по моторному методу.

Автомобильные бензины должны обладать хорошей испаряемостью, стойкостью против детонации, высокой теплотворной способностью, стабильностью при длительном хранении; не должны содержать соединений, вызывающих коррозию, смолистых отложений, а также воды и механических примесей.

Читать далее: Простейший карбюратор

Категория:
Автомобили и трактора

Датчик ДМРВ

Иногда необходимо проверить все, что можно. Стоит начать с диагностики датчиков. Как известно, одна из самых популярных проблем — это забитый или засоренный датчик расхода воздуха. Если на нем скопилось большое количество грязи, то это нередко приводит к медленному реагированию ЭБУ на расход воздуха и его смену. Дополнительно датчик может загрязняться испарениями горючего, которые проходят во впускном коллекторе. Кроме того, налет может скапливаться через корпус дроссельной заслонки, когда мотор не работает. На датчике откладывается слой из парафина, из-за которого в ЭБУ попадают неверные данные о пропорциях топливной смеси.

Другие показатели, важные для нефтепродуктов

Температура воспламенения нефтепродукта

Эта температура нефтепродуктов всегда выше описанной в первой части статьи. Если для определения значения вспышки появления первого пламени с последующим его затуханием, то для этого показателя необходим такой нагрев,  при котором вещество будет гореть постоянно. Разница между этими двумя характеристиками при измерении может составлять от 30-ти до 50-ти градусов.

Температура самовоспламенения

Анализатор температуры вспышки по Пенски-Мартенсу PMA 5

Она находится в прямой зависимости от химического состава нефтепродукта. Самые высокие значения этого показателя характерны для углеводородов ароматической группы, за ними идут нафтеновые  и парафиновые вещества.

Зависимость проста – чем легче нефтяная фракция, тем выше значение t самовоспламенения. Например, самовоспламенение бензиновых фракции может происходит в диапазоне  от 400 до 450 градусов, а у  газойлей – от 320-ти до 360-ти.

Знание этого значения очень важно, поскольку самовоспламенение является достаточно частой причиной возникновения пожаров на предприятиях нефтепереработки, когда любое нарушение герметичности в теплообменниках, трубопроводах или в ректификационных колоннах (например, из-за   разгерметизации фланцевых соединений) приводит к самовозгоранию. Следует помнить, что если на изоляционный материал попадает нефтепродукт, его нужно как можно быстрее заменить, так как  каталитическое действие продукта способно вызвать самовозгорание при более низких t, чем температура самовоспламенения

Следует помнить, что если на изоляционный материал попадает нефтепродукт, его нужно как можно быстрее заменить, так как  каталитическое действие продукта способно вызвать самовозгорание при более низких t, чем температура самовоспламенения.

Температура застывания

Определение температуры застывания необходимо для обеспечения нормальной транспортировки с помощью трубопроводов, а также при использовании нефтяных производных  в условиях  сильных морозов (например, в авиации, где использование быстро застывающего топлива невозможно). В этих сферах крайне важна такая характеристика, как подвижность нефтяных продуктов, от которой зависит степень их прокачиваемости.

ТВО-ЛАБ-11 Автоматический аппарат для определения температуры вспышки в открытом тигле

Снижение подвижности и полная её потеря  может объясняться следующими факторами:

Полезная информация
1 повышение вязкости вещества
2 образование в нем парафиновых кристаллов, что приводит к общему загустеванию

Список используемой литературы:

  • Нефть и Нефтепродукты — Википедия
  • Хаустов, А. П. Охрана окружающей среды при добыче нефти/ Хаустов, А. П., Редина, М. М. Издательство: «Дело», 2006. 552 с.
  • Алекперов, В.Ю. Нефть России: прошлое, настоящее и будущее /Алекперов В.Ю. М.: Креативная экономика, 2011. – 432 с.
  • Издательство: «Нефть и газ», 2006. 352 с. Сургутнефтегаз.
  • Экономидес, М. Цвет нефти. Крупнейший мировой бизнес: история, деньги и политика/ Экономидес М., Олини Р. Издательство: «Олимп-Бизнес», 2004. 256 с.
  • Эрих В.Н. Химия нефти и газа. — Л.: Химия, 1966. — 280 с. — 15 000 экз.

Неисправности во впускной системе

Для устранения проблемы обедненной смеси рекомендуется также провести диагностику дроссельной заслонки. Положение заслонки должно четко соответствовать положению педали акселератора

Если дроссельная заслонка автоматическая, важно обратить внимание на то, чтобы ее положение соответствовало температуре силового агрегата. На горячем двигателе она должна быть полностью открыта, на холодном – повернута на определенный угол. Если заслонка открыта, значит, система регулирования воздушной заслонки неисправна

На что еще грешат в случае, если в моторе образовывается бедная смесь? Причины – инжектор и поврежденные прокладки впускного коллектора. Чтобы устранить эту неисправность, рекомендуется подтянуть коллектор, а при необходимости и заменить прокладки

Если заслонка открыта, значит, система регулирования воздушной заслонки неисправна. На что еще грешат в случае, если в моторе образовывается бедная смесь? Причины – инжектор и поврежденные прокладки впускного коллектора. Чтобы устранить эту неисправность, рекомендуется подтянуть коллектор, а при необходимости и заменить прокладки.

Начальная температура — горючая смесь

Начальная температура горючей смеси влияет на пределы воспламенения. С повышением температуры промежуток воспламенения расширяется, при этом нижний предел уменьшается, а верхний увеличивается. В табл. 42 приведено изменение пределов воспламенения некоторых горючих смесей от температуры смеси.

Зависимость концентрационных пределов воспламенения различных горючих газов от начальной температуры смеси.

Начальная температура горючей смеси влияет на пределы воспламенения. С повышением температуры увеличивается скорость химической реакции и область воспламенения расширяется. Наиболее сильное влияние температура оказывает на верхний концентрационный предел воспламенения.

С изменением начальной температуры горючей смеси изменяется скорость хиьшческих реакций. Повышение температуры увеличивает скорость предпламенных реакций окисления и скорость смешивания при воспламенении распыленных жидких топлив, что приводит к снижению температуры воспламенения и сокращению длительности задержки воспламенения. Влияние начальной температуры на период задержки воспламенения особенно сильно проявляется при низких температурах: оно тем сильнее, чем хуже воспламеняемость топлива. При высоких температурах влияние химической природы топлива проявляется в меньшей мере, чем при низких.

Расчетные значения Рта для стехиометрических смесей органических веществ с воздухом.

Формула (4.61) применима при начальных температурах горючей смеси не выше 70 С.

С увеличением степени сжатия возрастает начальная температура горючей смеси в конце такта сжатия, что способствует более полному ее сгоранию. В карбюраторных двигателях увеличению степени сжатия выше 8 — 9 препятствует самовоспламенение ( детонация) горючей смеси, происходящее еще до того, как поршень достигнет верхней мертвой точки. Это явление оказывает разрушающее действие на двигатель и снижает его мощность и КПД. Достигнуть высоких степеней сжатия без детонации удалось увеличением скорости движения поршня при повышении числа оборотов двигателя до 5 — 6 тыс. об / мин и применением бензина со специальными антидетонационными присадками.

Диаграмма рабочего цикла карбюраторного двигателя внутреннего сгорания.

С увеличением степени сжатия возрастает начальная температура горючей смеси в конце такта сжатия, что способствует более полному ее сгоранию. Дальнейшему увеличению степени сжатия препятствует самовоспламенение ( детонация) горючей смеси, происходящее еще до того, как поршень достигнет верхней мертвой точки. Это явление оказывает разрушающее действие на двигатель и снижает его мощность и КПД.

R — универсальная газовая постоянная; Т — начальная температура горючей смеси; Я — теплопроводность горючей смеси.

Все физические параметры: a, v, i, cp, с, приняты для начальной температуры горючей смеси Тг 293 К.

В стандартных экспериментах по исследованию основных свойств горючих смесей, как правило, измеряют зависимость скорости распространения пламени от начальной температуры горючей смеси и давления. Если процесс горения протекает через последовательные стадии, полученные в экспериментах, температурный коэффициент скорости горения adlnm / dT0 и барический коэффициент vdlumldP, при некоторых значениях температуры и давления, соответствующих смене режимов горения, претерпевают резкое изменение.

Экспериментально установлено, что установившаяся волна детонации распространяется с постоянной скоростью, в значительной степени зависящей от состава горючей смеси; материал трубки не оказывает влияния на скорость волны детонации; скорость детонации не зависит от диаметра трубки, если он не имеет слишком малой величины; начальная температура горючей смеси практически не влияет на скорость детонации.

Экспериментально установлено, что установившаяся волна детонации распространяется с постоянной скоростью, в значительной степени зависящей от состава горючей смеси; материал трубки не оказывает влияния на скорость волны детонации; скорость детонации не зависит от диаметра трубки, если он не имеет слишком малой величины; начальная температура горючей смеси практически не влияет на скорость детонации. Таким образом, скорость волны детонации представляет собой физико-химическую константу.

Однако метод предварительного подогрева для горячих пламен часто оказывается непригодным из-за влияния диссоциации продуктов горения. Изменение начальной температуры горючей смеси приводит к смещению диссоциа-ционного равновесия; таким образом, изменение температуры горения может сопровождаться значительным изменением состава смеси в зоне реакции.

Сгорание рабочей смеси в двигателях с искровым зажиганием

О протекании процесса сгорания можно судить по индикаторным диаграммам, показывающим графически изменение давления Р в цилиндре в зависимости от угла ф поворота коленчатого вала. Площадь индикаторной диаграммы пропорциональна работе, совершенной при сгорании рабочей смеси внутри цилиндра за один цикл. Если зажигание выключено, то давление в цилиндре при вращении коленчатого вала изменяется почти симметрично относительно в.м.т. (нижняя кривая). Для нормальной работы двигателя зажигание должно включаться тогда, когда должна возникнуть искра между электродами свечи. Момент искрообразования соответствует положению точки 1 на диаграмме, а давление в камере сжатия — ординате P1.

Процесс сгорания условно делят на три фазы.

Начальная фаза — Q1 начинается в момент образования искры. Возле электродов свечи зажигания воспламеняется небольшой объем рабочей смеси. Она горит сравнительно медленно. Давление в цилиндре на протяжении этого периода остается практически таким же, как и при выключенном зажигании.

Заканчивается первая фаза тогда, когда сгорает 6…8% общего объема смеси, находящейся в камере сгорания. Температура повышается настолько, что начиная от точки 2 давление резко возрастает, наступает основная фаза быстрого сгорания (участок 2… 3). Скорость распространения пламени в средней части камеры сгорания достигает 60…80 м/с. Вдоль стенок камеры скорость сгорания ниже, а сгорание — неполное. Продолжительность второй фазы для быстроходных двигателей составляет 25…30° угла поворота коленчатого вала. В этой фазе выделяется основная часть тепла.

Третья фаза Q3 — фаза сгорания смеси на периферийных участках камеры в такте расширения. За начало этой фазы принимают точку 3. Давление в цилиндре в этот момент будет максимальным.

От интенсивности тепловыделения в основной фазе зависит скорость нарастания давления по углу поворота коленчатого вала, или, иначе, жесткость работы двигателя. В современных автомобильных двигателях скорость повышения давления колеблется в пределах 0,12…0,25 МПа на 1° угла поворота вала. Чем круче нарастает давление на участке 2..3, тем жестче работает двигатель и тем больше износ кривошипно-шатунного механизма.

Продолжительность первой фазы зависит от ряда факторов.

Чем ближе величина коэффициента избытка воздуха а к оптимальному значению, тем лучше состав смеси и тем короче продолжительность первой фазы. При значительном обеднении смеси воспламенение ее ухудшается и экономичность работы двигателя снижается. Чем мощнее искровой разряд, тем интенсивнее распространение пламени и тем короче первая фаза.

На продолжительность второй фазы сгорания оказывают влияние те же факторы, что и на продолжительность первой фазы. Кроме того, вторая фаза зависит от величины угла опережения зажигания и частоты вращения коленчатого вала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector