Учимся читать гидравлические схемы

Принцип работы гидромотора

Основная задача агрегата заключается в обеспечении процесса преобразования энергии циркулирующей жидкости в механическую энергию, которая, в свою очередь, передается через вал исполнительным органам. На первом этапе работы гидромотора происходит поступление жидкости в паз распределительной системы, откуда она переходит в камеры блока цилиндров. По мере наполнения камер увеличивается давление на поршни, в результате чего формируется и крутящий момент. В зависимости от конкретного устройства гидромотора, принцип действия системы на этапе преобразования силы давления в механическую энергию может быть разным. Например, крутящий момент в аксиальных механизмах образуется за счет действия сферических головок и гидростатических опор на подпятниках, через которые и начинается работа блока цилиндров. На конечном этапе завершается цикл нагнетания и вытеснения жидкостной среды из цилиндрической группы, после чего поршни начинают обратное действие.

Гидравлические схемы

Для того, чтобы гидравлическая жидкость могла совершить работу, поток жидкости должен поступить в силовой привод или мотор, а затем вернуться в ёмкость. Далее жидкость фильтруется и снова подаётся в насос (разомкнутая схема гидропривода). Путь прохождения жидкости называется гидравлической схемой, которые бывают нескольких типов.

В схемах с открытым центром используется насос, являющийся источником постоянного потока. Жидкость возвращается в ёмкость через управляющий клапан, под которым понимают гидрораспределитель с открытым центром, то есть когда клапан расположен в центральном положении, он открывает обратный путь для жидкости в ёмкость и высокого давления не создаётся. Когда же клапан приведён в действие, поток направляется или в силовой агрегат или в ёмкость. Давление жидкости будет расти, пока не получит сопротивление, далее насос будет иметь постоянный выход. Если давление жидкости станет слишком большим, жидкость начнёт возвращаться в ёмкость через предохранительный клапан (Pressure relief valve (англ.)). Различные управляющие клапаны могут соединяться последовательно. В схемах такого типа могут использоваться недорогие заменяемые насосы.

В схемах с закрытым центром полное давление доставляется на управляющие клапаны, вне зависимости от того, приведён клапан в действие или нет. Насосы изменяют свои выходные потоки, нагнетая очень слабый поток жидкости до тех пор, пока оператор не приведёт в действие клапан. Различные управляющие клапаны могут соединяться параллельно между собой, давление на каждом одинаково.

Я ИНЖЕНЕР, а мог бы зарабатывать деньги )))

Разгрузка насоса путем уменьшения давления жидкости на выходе из насоса достигается с помощью автомата разгрузки, который при рабочем давлении в системе всю жидкость от насоса направляет на слив в бак.

Распределитель Распределитель на гидросхеме показывается набором, квадратных окон, каждое из которых соответствует определенному положению золотника позиции.

Приложенное к толкателю усилие перемещает его вместе с редукционной пружиной и золотником вправо, и жидкость из напорной линии поступает к потребителю. Расположенный в конце трубопровода цилиндр 4 и является такого рода сопротивлением движению жидкости. В конце каждого хода поршня поворотного цилиндра 4 клапан 7 в результате повышения давления перепускает жидкость в линию 10 управления распределителем 2 и клапаном 11, перемещая их рабочие элементы.

Из схемы III видно, что золотник 2 снова включен, а золотник 1 отключен, но принимает участие в этом переходе. Подобная схема гидросистемы с реверсивным регулируемым насосом 2 и гидравлически управлением производительностью по положению поршня 9 сервопривода представлена на рис. Гидросистема имеет одну общую насосную станцию 1 и три гидроцилиндра 2, 3 и 4. Рекламные предложения:.

Пример выполнения гидравлической схемы Буквенные позиционные обозначения основных элементов гидравлической схемы: А — Устройство общее обозначение. Автоматический регулятор постоянной мощности. Рассмотрим пример. Выключение и включение насоса происходят автоматически.

На рис. Работа демпфера основана на вытеснении жидкости из замкнутой полости через калиброванное отверстие. Управление системой осуществляется автоматически действующим двухпозиционным распределителем 2 и разгрузочными клапанами последовательного включения 6 и 11 с управлением с помощью давления жидкости, перепускаемой предохранительными клапанами 5 и 7 в конце каждого хода поворотного поршня цилиндра.

Оборудование, материаловедение, механика и …

При резком увеличении подачи жидкости золотник вследствие инерции и трения открывается с запозданием, что вызывает выброс давления и вызванное этим забросом давления чрезмерное открытие золотника. Гидросистемы с регулируемым насосом и дросселем На рис. При работе насоса на систему золотник и клапан датчика закрыты, полость В сообщена через отверстие 5 в поршне и каналы в стержне с линией слива. В правой позиции распределителя 4 напорная линия Н соединяется с отводом Б и правой полостью гидроцилиндра 7 через обратный клапан 6.

Насосные станции используются чаще всего для создания давления в аварийных гидросистемах, поскольку насос имеет автономный привод. Изменив положение поршня 6 в распределителе, можно соединить трубопровод Р и В. Оставшееся положение показано в правом окне, соединены линии Р и А, В и Т. К функциональным символам относятся треугольники черный — гидравлика, белый — пневматика , различные стрелки, линии, пружины, дуги для дросселей , буква М для электромоторов.
Hydraulics

Умножение силы и крутящего момента

Примеры гидравлической силы и умножения вращающего момента.

Фундаментальной основой гидравлических систем является способность приумножать усилие или крутящий момент простым способом, без применения системы шестерён и рычагов. Это достигается изменением эффективной рабочей поверхности соединённых цилиндров или перемещением энергии от насоса к мотору.

Примеры

  1. два соединённых цилиндра:Цилиндр C1 имеет диаметр 1 см, а цилиндр С2 — 10 см. Если сила воздействующая на С1 — 10 Н, сила воздействующая на С2 со стороны жидкости — 1000 Н, потому что цилиндр С2 по площади (S=πr2{\displaystyle S=\pi r^{2}}) в 100 раз больше С1. Обратная сторона полученного преимущества в том, чтобы переместить цилиндр С2 на 1 см, необходимо переместить цилиндр С1 на 100 см.
  2. насос и мотор:Если гидравлический роторный насос, перемещающий 10 мл/об жидкости, соединён с гидравлическим роторным мотором, перемещающим 100 мл/об, прикладываемый момент для вращения насоса в 10 раз меньше, чем момент вращения мотора, но скорость вращения мотора будет в 10 раз меньше, чем насоса.

Оба примера можно называть гидравлической или гидростатической трансмиссией, имеющей точное передаточное число.

Расчет гидравлической системы

При проектировании подобных устройств принимается во внимание множество самых разных факторов. К таковым можно отнести, к примеру, кинематический коэффициент вязкости жидкости, ее плотность, длину трубопроводов, диаметры штоков и т

д.

Основными целями выполнения расчетов такого устройства, как гидравлическая система, чаще всего является определение:

  • Характеристик насоса.
  • Величины хода штоков.
  • Рабочего давления.
  • Гидравлических характеристик магистралей, других элементов и всей системы в целом.

Производится расчет гидравлической системы с использованием разного рода арифметических формул. К примеру, потери давления в трубопроводах определяются так:

  1. Расчетную длину магистралей делят на их диаметр.
  2. Произведение плотности используемой жидкости и квадрата средней скорости потока делят на два.
  3. Перемножают полученные величины.
  4. Умножают результат на коэффициент путевых потерь.

Сама формула при этом выглядит так:

∆pi = λ х li(p) : d х pV2 :2.

В общем, в данном случае расчет потерь в магистралях выполняется примерно по тому же принципу, что и в таких простых конструкциях, как гидравлические системы отопления. Для определения характеристик насоса, величины хода поршня и т. д. используются другие формулы.

Разработка гидравлической схемы

Гидравлической схемой оборудования является конструкторский документ, на котором показаны в виде условных изображений или обозначений составные части оборудования и связи между ними. Графические обозначения элементов на гидросхеме должны быть расположены таким образом, чтобы линии связи были наименьшей длины, а число их изломов и взаимных пересечений было минимальным. Каждый элемент или устройство, входящее в оборудование и изображенное на схеме, должны иметь буквенно-цифровое позиционное обозначение, состоящее из буквенного обозначения и порядкового номера, проставленного после буквенного обозначения.

Гидравлические схемы оборудования и машин в зависимости от их основного назначения разделяют на следующие типы:
— структурные;
— принципиальные;
— соединительные (монтажные).

Структурная схема гидравлическая изображает все основные функциональные части оборудования (элементы, устройства и функциональные группы) и основные взаимосвязи между ними. Функциональные части на гидросхеме изображают сплошными основными линиями в виде прямоугольников или условных графических обозначений. Графическое построение схемы гидравлической должно давать наиболее наглядное представление о последовательности взаимодействия функциональных частей в изделии. На линиях взаимосвязей должно присутствовать указание направления потоков рабочей среды.

Принципиальная гидравлическая схема отображает все гидравлические элементы или устройства, необходимые для осуществления и контроля в оборудовании заданных гидравлических процессов, и все гидравлические связи между ними. Элементы и устройства на гидросхеме изображают в виде условных графических обозначений. Все элементы и устройства изображают на схемах в исходном положении: пружины в состоянии предварительного сжатия, электромагниты обесточенными и т. п. Принципиальная гидравлическая схема определяет полный состав элементов и связей между ними и дает детальное представление о принципах работы изделия. Обычно принципиальная гидравлическая схема служит основой для расчета гидропривода, разработки схем соединений, изучения принципа действия оборудования.

Соединительной (монтажной) является гидравлическая схема, показывающая соединение составных частей изделия и определяющая трубопроводы, которыми обеспечиваются эти соединения, а также места их присоединения. Элементы и устройства на схеме (после расчета и выбора стандартного гидрооборудования) изображают в виде упрощенных внешних очертаний. 

Буквенные обозначения основных элементов гидропривода на принципиальных гидравлических схемах

Наименование элемента

Буквенное обозначение

 Общее обозначение устройства

А

 Гидроаккумулятор (пневмоаккумулятор)

АК

 Аппарат теплообменный

АТ

 Гидробак

Б

 Вентиль

ВН

 Гидровытеснитель

ВТ

 Пневмоглушитель

Г

 Гидродвигатель поворотный

Д

 Делитель потока

ДП

 Гидродроссель

ДР

 Гидрозамок

ЗМ

 Гидроклапан

К

 Гидроклапан выдержки времени

КВ

 Гидроклапан давления

КД

 Гидроклапан обратный

КО

 Гидроклапан предохранительный

КП

 Гидроклапан редукционный

КР

 Компрессор

КМ

 Гидромотор

М

 Манометр

МН

 Гидродинамическая передача

МП

 Маслораспылитель

МР

 Масленка

МС

 Гидродинамическая муфта

МФ

 Насос

Н

 Насос аксиально-поршневой

НА

 Насос-мотор

НМ

 Насос пластинчатый

НП

 Насос радиально-поршневой

HP

 Пневмогидропреобразователь

ПГ

 Гидропреобразователь

ПР

 Гидрораспределитель

Р

 Реле давления

РД

 Гидроаппарат золотниковый

РЗ

 Гидроаппарат клапанный

РК

 Регулятор потока

РП

 Ресивер

PC

 Сепаратор

С

 Сумматор потока

СП

 Термометр

Т

 Гидродинамический трансформатор

ТР

 Устройство воздухоспускное

УВ

 Гидроусилитель

УС

 Фильтр

Ф

 Гидроцилиндр

Ц

Аксиально-поршневые гидромоторы

Один из вариантов исполнения роторно-поршневой гидравлической машины, в котором чаще всего предусматривается аксиальное размещение цилиндров. В зависимости от конфигурации они могут располагаться вокруг, параллельно или с небольшим уклоном по отношению к оси вращения блока поршневой группы. В устройстве аксиально-поршневого гидромотора предполагается возможность и реверсного хода, поэтому в компоновках с обслуживаемыми агрегатами необходимо подключение отдельной дренажной линии. Что касается целевой техники, эксплуатирующей такие движки, то к ней относятся станочные гидроприводы, гидравлические прессы, мобильные рабочие установки и различное оборудование, работающие с крутящим моментом до 6000 Нм при высоком давлении 400-450 бар. Объем обслуживаемой среды в таких системах может быть как постоянным, так и регулируемым.

Пневматические привода

Преимущества

Простота и экономичность. Большинство пневматических алюминиевых приводов имеют максимальное давление до 1 МПа с рабочим диаметром цилиндра от 12,5 до 200 мм, что приблизительно соответствует силе в 133 — 33000 Н. Стальные пневматические привода обычно имеют максимальное давление до 1,7 МПа с рабочим диаметром цилиндра от 12,5 до 350 мм и создают силу от 220 до 171000 Н .

Пневматические привода позволяют точно управлять перемещением обеспечивая точность в пределах 2,5 мм и повторяемость в пределах 0,25 мм.

Пневматические привода могут применяться в районах с экстремальными температурами. Стандартный диапазон температур от -40 до 120 ˚C. В плане безопасности использование воздуха в пневматических приводах избавляет от необходимости использования опасных материалов. Данные привода удовлетворяют требованиям взрывозащищенности и безопасности, так как они не создают магнитного поля, в связи с отсутствием электродвигателя.

В последние годы в области пневматики достигнуты успехи в миниатюризации, материалах и интеграции с электроникой. Стоимость пневматических приводов низкая в сравнении с другими приводами. Пневматические привода имеют маленький вес, требуют минимального обслуживания и имеют надежные компоненты.

Недостатки

Потеря давления и сжимаемость воздуха делает пневматические привода менее эффективными, чем другие способы создания линейного перемещения. Ограничения компрессора и системы подачи значит, что работа на низком давлении приведет к маленьким силам и скоростям. Компрессор должен работать все время даже если привода ничего не перемещают.

Для действительно эффективной работы пневматические привода должны иметь определенные размеры для каждой задачи. Из-за этого они не могут использоваться для других задач. Точное управление и эффективность требуют распределители и вентили соответствующего размера для каждого случая, что увеличивает стоимость и сложность.

Несмотря на то, что воздух легко доступен, он может быть загрязнен маслом или смазкой, что приводит к простою и необходимости в обслуживание.

Цилиндр пневматического привода

Гидравлические системы с регулируемым и нерегулируемым гидроприводом

Существуют две основные конфигурации схем с закрытым центром, связывающие регулятор с насосом переменного потока жидкости:

Стандартная система с нерегулируемым гидроприводом (Constant pressure systems, CP-system, standard). В такой системе давление насоса всегда равняется давлению, установленному его регулятором. Установка регулятора должна перекрывать максимальное давление, создаваемое нагрузкой. Насос создаёт поток, равный сумме потоков всех потребителей. Такая CP-система имеет большие потери мощности, если выходная нагрузка меняется в широком диапазоне, а среднее давление в системе намного ниже, чем установленное регулятором. CP-система проста в изготовлении. Также работает и пневматическая система. В систему легко могут быть добавлены новые гидравлические компоненты, и она быстро реагирует на управление.

Система с нерегулируемым гидроприводом низкого давления (Constant pressure systems, CP-system, unloaded). Та же самая конфигурация, как и в стандартной CP-системе, только насос находится в состоянии ожидания, генерируя низкое давление, когда все клапаны находятся в нейтральном положении. Система имеет более медленную реакцию при приведении управляющих клапанов в рабочее положение, чем стандартная CP-система, зато увеличивается время жизни насоса.

Система с регулируемым гидроприводом (Load-sensing systems, LS-system) имеет меньшие потери, так как насос снижает и выходной поток и давление, подгоняя их к требованиям нагрузки, но требует более точной регулировки, чем CP-система, по отношению к устойчивости. LS-системе требуются также дополнительные логические клапаны, компенсаторы в клапанах направленного действия, таким образом система более сложна технически и имеет большую стоимость. В LS-системе возникают потери, которые зависят от падения давления на регуляторе насоса:

Power loss=△pls⋅Qtot{\displaystyle \mathbf {Power~loss} =\vartriangle \mathbf {p} _{ls}\cdot \mathbf {Q} _{tot}}

Обычно △pls{\displaystyle \vartriangle p_{ls}} берётся около 2 МПа (290 psi). Если скорость потока высокая, потери могут быть значительными. Потери также увеличиваются, если действующая нагрузка сильно меняется.

Гидравлическая схема

Ранее в тексте приводились рисунки, помогающие понять принципы работы гидравлической системы и её составных частей. Мы старались показать конструкцию на различных примерах и использовали различные типы рисунков. Рисунки, которые мы используем, называются графической схемой.

Каждая часть системы и каждая линия изображается графическим символом.

Ниже приведены примеры графической диаграммы.

Важно понять, что назначение графической диаграммы не показать устройство деталей. Графическая диаграмма используется только для показа функций и мест соединений

Классификация линий

Все составные части гидравлической системы соединены линиями. Каждая линия имеет своё название и выполняет свою функцию. Основные линии:

Рабочие линии: Напорная линия, Линия всасывания, Сливная линия

Не рабочие линии: Дренажная линия, Пилотная линия

Масло рабочей линии участвует в преобразовании энергии. Линия всасывания доставляет масло из бака к насосу. Напорная линия доставляет масло от насоса к приводу под давлением для совершения работы и сливная линия возвращает масло от привода обратно в бак.

Не рабочие линии являются дополнительными линиями, которые не используются в основных функциях системы. Дренажная линия используется для возврата в бак лишнего масла или масла пилотной линии. Пилотная линия используется для управления рабочими органами.

Принципиальные гидравлические (пневматические) схемы

На принципиальной схеме изображают все гидравлические (пневматические) элементы или устройства, необходимые для осуществления и контроля в изделии заданных гидравлических (пневматических) процессов, и все гидравлические (пневматические) связи между ними. При этом используются графические условные обозначения:

  • для гидроаккумуляторов, кондиционеров, гидробаков и других элементов – по ГОСТ 2.780-96;
  • для распределителей и контрольно-измерительных устройств – по ГОСТ 2.781-96;
  • для насосов и гидродвигателей (пневмодвигателей) – по ГОСТ 2.782-96.

Каждый элемент должен иметь позиционное обозначение, которое состоит из литерного обозначения и порядкового номера. Литерное обозначение должно представлять собой укороченное наименование элемента, составленное из его начальных или характерных букв, например: клапан — К, дроссель — ДР. Порядковые номера элементов (устройств) следует присваивать, начиная с единицы, в границах группы элементов (устройств), которым на схеме присвоено одинаковое литерное позиционное обозначение, например, Р1, Р2, Р3 и т.д., К1, К2, К3 и т.д.

Литерные позиционные обозначения основных элементов:

  • Устройство (общее обозначение) — А
  • Гидроаккумулятор (пневмоаккумулятор) — АК
  • Аппарат теплообменный — AT
  • Гидробак — Б
  • Влагоотделитель — ВД
  • Вентиль — ВН
  • Гидровытеснитель — ВТ
  • Пневмоглушитель — Г
  • Поворотный гидродвигатель (поворотный пневмодвигатель) — Д
  • Делитель потока — ДП
  • Гидродроссель (пневмодроссель) — ДР
  • Гидрозамок (пневмозамок) — ЗМ
  • Гидроклапан (пневмоклапан) — К
    • Гидроклапан (пневмоклапан) выдержки времени — КВ
    • Гидроклапан (пневмоклапан) давления — КД
    • Гидроклапан (пневмоклапан) обратный — КО
    • Гидроклапан (пневмоклапан) предохранительный — КП
    • Гидроклапан (пневмоклапан) редукционный — КР
  • Компрессор — КМ
  • Гидромотор (пневмомотор) — М
  • Манометр — МН
  • Гидродинамическая передача — МП
  • Маслораспылитель — МР
  • Гидродинамическая муфта — МФ
  • Насос — Н
    • Насос аксиально-поршневой — НА
    • Насос-мотор — НМ
    • Насос пластинчастый — НП
    • Насос радиально-поршневой — HP
  • Пневмогидропреобразователь — ПГ
  • Гидропреобразователь — ПР
  • Гидрораспределитель — Р

    • Реле давления — РД
    • Гидроаппарат (пневмоаппарат) золотниковый — РЗ
    • Гидроаппарат (пневмоаппарат) клапанный — РК
    • Регулятор потока — РП
  • Ресивер — PC
  • Сепаратор — С
  • Сумматор потоков — СП
  • Термометр — Т
  • Гиродинамический трансформатор — ТР
  • Устройство выпуска воздуха — УВ
  • Гидроусилитель — УС
  • Фильтр — Ф
  • Гидроцилиндр (пневмоцилиндр) — Ц

На принципиальной схеме должны быть однозначно обозначены все элементы, входящие в состав изделия и изображённые на схеме.

Данные об элементах должны быть занесены в перечень элементов. При этом связь перечня с условными графическими обозначениями элементов должна осуществляться через позиционные обозначения. Перечень элементов размещают на первом листе схемы или выполняют в виде самостоятельного документа.

Эти схемы обозначаются в шифре основной надписи символами Г3 (П3′).

Радиально-поршневые гидромоторы

Наиболее гибкая и сбалансированная конструкция гидромотора с точки зрения регуляции крутящего момента с выработкой высоких значений. Радиально-поршневые механизмы бывают с однократным и многократным действием. Первые используются в шнековых линиях перемещения жидкостей и сыпучих взвесей, а также в поворотных узлах производственных конвейеров. Радиально-поршневое устройство и принцип работы гидромотора с однократным действием можно отразить в следующем функциональном цикле: под высоким давлением рабочие камеры начинают действовать на кулак привода, запуская таким образом и вращение вала, транслирующего усилие на исполнительное звено. Обязательным конструкционным элементом является распределитель слива и подвода жидкости, сопряженный с рабочими камерами. Системы многократного действия как раз отличаются более сложной и развитой механикой взаимодействия камер с валом и каналами распределения жидкости. В данном случае наблюдается четкая разделенная координация внутри функции распределительной системы по отдельным блокам цилиндров. Индивидуальная регуляция на контурах может выражаться как в простейших командах включения/отключения клапанов, так и в точечном изменении параметров давления и объема перекачиваемой среды.

Применение

Гидравлический домкрат (используется для монтажа/демонтажа в строительстве, машиностроении и т.п.)

Устройство гидросистемы домкрата:

1. Домкрат или цилиндр — исполнительный механизм, создающий усилие.
2. Быстроразъемное соединение (гнездо) — для быстрого соединения рукава высокого давления с компонентами гидросистемы, устанавливается со стороны цилиндра.
3. Быстроразъемное соединение (штекер) — для быстрого соединения рукава высокого давления с компонентами гидросистемы, устанавливается со стороны маслостанции.
4. Рукав высокого давления — для передачи гидравлической жидкости под давлением между компонентами гидросистемы.
5. Манометр — для контроля давления в гидросистеме.
6. Адаптер — для подключения манометра к гидросистеме.
7. Насос ручной гидравлический — нагнетает в гидросистему жидкость под давлением, приводится в действие мускульной силой.

Экскаватор гидравлический, оборудованный прямой лопатой
1 – ковш
2 – стрела
3 – гидроцилиндр стрелы
4 – рукоять
5 – гидроцилиндр рукояти
6 – днище ковша
7 – гидроцилиндр открывания ковша

В станкостроении гидравлическая система нашла также широкое применение, однако в этой области она испытывает высокую конкуренцию со стороны других видов привода.

Широкое распространение получил гидропривод в авиации. Насыщенность современных самолётов системами гидропривода такова, что общая длина трубопроводов современного пассажирского авиалайнера может достигать нескольких километров. Например, в системах автоматики на самолетах гидравлические элементы широко используются для уборки и выпуска шасси, закрылков, аэродинамических тормозов, в управлении при рулежке самолета, для торможения колес шасси и других устройствах.

В автомобильной промышленности самое широкое применение нашли гидроусилители руля, существенно повышающие удобство управления автомобилем. Гидроусилители применяют и во многих других областях техники (авиации, тракторостроении, промышленном оборудовании и др.).

Символы клапана – 2

2) РАСПРЕДЕЛИТЕЛЬНЫЙ КЛАПАН ПОТОКА

Обратный клапан

Обратный клапан открывается, чтобы дать двигаться маслу в одном направлении и закрывается, чтобы препятствовать движению масла в обратном направлении.

Золотниковый клапан

Символ распределительного золотникового клапана использует сложную закрытую систему, которая имеет отдельный прямоугольник для каждой позиции.

Клапан с четырьмя отверстиями

Обычно клапан с четырьмя отверстиями имеет два отделения, если этот клапан имеет две позиции или три отделения, если клапан имеет центральную позицию.

Символы управления рычагов

Символы управления рычагов отображают рычаг, педаль, механические органы управления или пилотной линии, расположены на краю отделения.

[править] Гидравлическое оборудование в сельском хозяйстве

Наряду с технологическим прогрессом росла производительность и в аграрной сфере. Сегодня специализированная техника практически полностью вытеснила ручной труд на полях или использование живой рабочей силы в принципе. Лошадей с плугами заменили трактора, к которым для работы на земельных участках цеплялись трехкорпусные плуги, косилки, бороны. Несколько позднее были созданы зерноуборочные комбайны, которые для собственного передвижения были прицепами к тракторам, а еще некоторое время спустя на полях стали появляться самостоятельные комбайны. Однако данная техника была очень тяжела в работе, так как различными операциями на ней приходилось руководить вручную, что, конечно же, далеко не каждому было под силу.

Постепенно в устройство сельскохозяйственных машин стала включаться гидравлика. С ее помощью управление спецтехникой значительно облегчилось, а производительность повысилась. Теперь такими механизмами оборудованы практически все трактора и комбайны.

Гидравлические системы и энергия

Гидравлические системы

Гидравлические системы используются для передачи механической энергии с одного места в другое. Это происходит через использование энергии давления. Гидравлический насос приводится в действие механической энергией. Механическая энергия преобразуется в энергию давления и кинетическую энергию гидравлической жидкости и затем снова преобразуется в механическую энергию для выполнения работы.

Значение преобразования энергии

Энергия, которая передаётся в гидравлическую систему, преобразуется из механической энергии двигателя, которая приводит в действие гидравлический насос. Насос преобразует механическую энергию в поток жидкости, преобразуя механическую энергию в энергию давления и кинетическую энергию. Поток жидкости передаётся через гидравлическую систему и направляется к приводам цилиндров и моторов. Энергия давления и кинетическая энергия жидкости вызывает движение привода. При этом движении происходит ещё одно преобразование в механическую энергию.

Как это работает в гидравлическом экскаваторе

В гидравлических экскаваторах, первичная механическая энергия двигателя приводит в действие гидравлический насос. Насос направляет поток масла в гидравлическую систему. При движении привода под действием давления масла происходит ещё раз преобразование в механическую энергию. Стрела экскаватора может подниматься или опускаться, производится движение ковша и т.д.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector