Этилмеркаптан

Биологическая роль

Смесь тиолов содержится в веществе, выделяемом скунсами, а также в продуктах гниения белков.

Аминокислота цистеин HSCH2CH(NH2)COOH, содержащая меркаптогруппу, входит в состав всех белков, а окисление цистеина с образованием дисульфидных мостиков в ходе посттрансляционной модификации белков является важнейшим фактором при формировании их третичной структуры. Высокая механическая прочность кератинов обусловлена, в том числе, и высокой степенью сшитости за счёт образования большого количества дисульфидных мостиков: так, например, содержание цистеина в кератине волоса человека, составляет ~14 %, а в некоторых кератинах доля цистеина может достигать и 30 %.

Трипептид глутатион, в состав которого также входит цистеин, является коферментом глутатионпероксидаз и играет важную роль в окислительно-восстановительных процессах в живых организмах.

Также существенное биологическое значение имеет метаболическое нитрозирование тиолов: глутатион и цистеиновые остатки белков при взаимодействии с активными формами азота образуют S-нитрозопроизводные, которые являются физиологическим депо оксида азота.

Химические свойства

Кислотность

Тиолы являются слабыми кислотами, образуя с гидроксидами щелочных и щелочноземельных металлов растворимые в воде тиоляты (меркаптиды), с солями тяжелых металлов — нерастворимые меркаптиды. Являются значительно более сильными кислотами, чем соответствующие кислородные спирты.

Тиол
Константа диссоциации
C6H5SH
3,0⋅10−7
C6H5CH2SH
3,75⋅10−10
CH2=CH-CH2SH
1,1⋅10−10
C2H5SH
2,5⋅10−11

н-C3H7SH
2,26⋅10−11

трет-C4H9SH
0,89⋅10−11

Тиолят-анионы высоконуклеофильны, и многие реакции замещения водорода группы -SH протекают через промежуточное образование тиолятов.

Так, тиолы алкилируются под действием алкилгалогенидов:

RS−+R1Hal→RSR1+Hal−{\displaystyle {\mathsf {RS^{-}+R^{1}Hal\rightarrow RSR^{1}+Hal^{-}}}}

Тиолы в присутствии оснований (пиридина, третичных аминов) ацилируются с образованием S-ацилпроизводных:

RSH+R1C(O)Hal→R1C(O)SR+HX{\displaystyle {\mathsf {RSH+R^{1}C(O)Hal\rightarrow R^{1}C(O)SR+HX}}}

Нитрозирование тиолов азотистой кислотой или нитрозилхлоридом ведёт к неустойчивым окрашенным нитрозилтиолам (тионитритам):

RSH+HNO2→RSNO+H2O{\displaystyle {\mathsf {RSH+HNO_{2}\rightarrow RSNO+H_{2}O}}}

Эта реакция используется как качественная реакция на тиолы.

Присоединение

Тиолы вступают в реакции присоединения к ацетиленовым, этиленовым и алленовым углеводородам. Реакция может протекать по нуклеофильному, электрофильному либо радикальному механизму.

Окисление

Тиолы окисляются самым широким спектром окислителей (кислород, пероксиды, оксиды азота, галогены и др.). Мягкие окислители (йод, алифатические сульфоксиды, активированный диоксид марганца и т. п.) реагируют с тиолами с образованием дисульфидов:

2RSH→ORSSR{\displaystyle {\mathsf {2RSH{\xrightarrow{}}RSSR}}}

которые, в свою очередь, при реакции с хлором образуют тиохлориды:

RSSR+Cl2→2RSCl{\displaystyle {\mathsf {RSSR+Cl_{2}\rightarrow 2RSCl}}}

При действии более жёстких окислителей (например, перманганата) сначала образуются сульфиновые кислоты и далее — сульфокислоты:

RSH→ORSO2H→ORSO3H{\displaystyle {\mathsf {RSH{\xrightarrow{}}RSO_{2}H{\xrightarrow{}}RSO_{3}H}}}

В случае окисления тетраацетатом свинца (CH3COO)4Pb в присутствии спиртов окисление идёт с образованием сульфинатов — соответствующих эфиров сульфиновых кислот:

RSH+CH3OH→ORSO2OCH3{\displaystyle {\mathsf {RSH+CH_{3}OH{\xrightarrow{}}RSO_{2}OCH_{3}}}}

В присутствии воды тиолы окисляются хлором до соответствующих сульфонилхлоридов:

RSH→H2O,Cl2RSO2Cl{\displaystyle {\mathsf {RSH{\xrightarrow{H_{2}O,Cl_{2}}}RSO_{2}Cl}}}

Синтез

Алифатические тиолы

Старейшим методом получения тиолов является алкилирование гидросульфидов щелочных металлов с первичными и вторичными алкилгалогенидами, в качестве алкилирующих агентов также могут выступать алкилсульфаты или алкилсульфонаты. Реакция идёт по механизму бимолекулярного нуклеофильного замещения SN2 и проводится обычно в спиртовых растворах, поскольку тиолят-ионы также являются сильными нуклеофилами, побочной реакцией является их дальнейшее алкилирование до сульфидов, снижающее выход тиолов; для повышения выхода необходимо использовать большой избыток гидросульфида:

RX+HS−→RSH+X−{\displaystyle {\mathsf {RX+HS^{-}\rightarrow RSH+X^{-}}}}
RSH+HS−→RS−+H2S{\displaystyle {\mathsf {RSH+HS^{-}\rightarrow RS^{-}+H_{2}S}}}
RS−+RX→R2S+X−;  X=Cl, Br, I, ROSO{\displaystyle {\mathsf {RS^{-}+RX\rightarrow R_{2}S+X^{-};\ \ X=Cl,\ Br,\ I,\ ROSO}}}

Более удобным методом синтеза тиолов является алкилирование тиомочевины с образованием алкилтиурониевых солей и их последующим щелочным гидролизом:

Преимуществом этого метода являются легкая очистка перекристаллизацией тиурониевых солей и достаточно высокие общие выходы тиолов.

Своего рода вариацией этого метода, позволяющего получить тиолы без побочного образования сульфидов, является алкилирование с последующим гидролизом ксантогенатов:

C2H5CSSK+RX→C2H5CSSR+KX{\displaystyle {\mathsf {C_{2}H_{5}CSSK+RX\rightarrow C_{2}H_{5}CSSR+KX}}}
C2H5CSSR+H2O→RSH+C2H5OH+CSO{\displaystyle {\mathsf {C_{2}H_{5}CSSR+H_{2}O\rightarrow RSH+C_{2}H_{5}OH+CSO}}}

или тиоацетатов:

CH3COSK+RX→CH3COSR+KX{\displaystyle {\mathsf {CH_{3}COSK+RX\rightarrow CH_{3}COSR+KX}}}
CH3COSR+H2O→RSH+CH3COOH{\displaystyle {\mathsf {CH_{3}COSR+H_{2}O\rightarrow RSH+CH_{3}COOH}}}

Тиолы также могут быть синтезированы из алкилгалогенидов через соли Бунте — соли S-алкилтиосульфокислот, получаемые алкилированием тиосульфата натрия, которые при кислотном гидролизе образуют тиолы:

RX+Na2S2O3→RSSO3Na+NaX{\displaystyle {\mathsf {RX+Na_{2}S_{2}O_{3}\rightarrow RSSO_{3}Na+NaX}}}
RSSO3Na+H2O→RSH+NaHSO4{\displaystyle {\mathsf {RSSO_{3}Na+H_{2}O\rightarrow RSH+NaHSO_{4}}}}

В условиях кислотного катализа сероводород может присоединяться к алкенам с образованием тиолов:

(CH3)2C=CH2+H2S→(CH3)3CSH{\displaystyle {\mathsf {(CH_{3})_{2}C{\text{=}}CH_{2}+H_{2}S\rightarrow (CH_{3})_{3}CSH}}}

Модификацией этого метода является присоединение тиоуксусной кислоты к алкенам с дальнейшим гидролизом образовавшегося алкилтиоацетата:

RCH=CH2+CH3COSH→RCH2CH2SCOCH3{\displaystyle {\mathsf {RCH{\text{=}}CH_{2}+CH_{3}COSH\rightarrow RCH_{2}CH_{2}SCOCH_{3}}}}
RCH2CH2SOCCH3+OH−→RCH2CH2SH+CH3COO−{\displaystyle {\mathsf {RCH_{2}CH_{2}SOCCH_{3}+OH^{-}\rightarrow RCH_{2}CH_{2}SH+CH_{3}COO^{-}}}}

Ароматические тиолы

Ароматические тиолы могут быть синтезированы восстановлением производных ароматических сульфокислот, так, например, тиофенол синтезируется восстановлением бензолсульфохлорида цинком в кислой среде:

C6H5SO2Cl→HC6H5SH{\displaystyle {\mathsf {C_{6}H_{5}SO_{2}Cl{\xrightarrow{}}C_{6}H_{5}SH}}}

Ароматические тиолы также могут быть синтезированы взаимодействием арилдиазониевых солей с гидросульфидами:

ArN2X→HS−ArSH{\displaystyle {\mathsf {ArN_{2}X{\xrightarrow{HS^{-}}}ArSH}}}

или ксантогенатами:

ArN2X→ROC(=S)S−ROC(=S)SAr{\displaystyle {\mathsf {ArN_{2}X{\xrightarrow{ROC({\text{=}}S)S^{-}}}ROC({\text{=}}S)SAr}}}
ROC(=S)SAr→H2OArSH+ROH+COS{\displaystyle {\mathsf {ROC({\text{=}}S)SAr{\xrightarrow{H_{2}O}}ArSH+ROH+COS}}}

Общие методы

Общим методом синтеза алифатических и ароматических тиолов является взаимодействие реактивов Гриньяра с серой:

RMgX+S→RSMgX{\displaystyle {\mathsf {RMgX+S\rightarrow RSMgX}}}
RSMgX+H2O→RSH+Mg(OH)X{\displaystyle {\mathsf {RSMgX+H_{2}O\rightarrow RSH+Mg(OH)X}}}

Новости партнеров

«);
obj.attr(‘id’, objId);
obj.addClass(‘news-grid clearfix’);
var objRec = false;

for(i in data) {
var rec = data;
objRec = $(«»);
if(rec)
objRec.addClass(‘news-grid__elem news-grid__elem_ad’);
else
objRec.addClass(‘news-grid__elem’);
objRec.html(»+rec+»);
obj.append(objRec);
}
underNewsEl.append(obj);
$(«#»+objId).find(«a»).click(function(){
var rec_id = $(this).attr(«rec_id»);
var s = document.createElement( ‘img’ );
s.setAttribute( ‘src’, ‘https://relap.io/api/v2/pixel.gif?rid=’+rec_id );
document.body.appendChild( s );
});

}
};

var startContentInsight = function(data) {
if (typeof _ain == ‘undefined’)
return;
if (typeof _ain.track == ‘undefined’)
return;
if (!data) {
data = {};
var el = $(«.newsContent»);
if (el.length) {
data = el.attr(«data-id»);
data = el.attr(«data-url»);
data = el.attr(«data-title»);
data = el.attr(«data-author»);
data = el.attr(«data-section»);
data = el.attr(«data-tags»);
data = el.attr(«data-pubdate»);
}
}

var mainContentId = ‘#newsContent_’ + data + ‘ .news-piece-layout__main’ ;
_ain.id = «1735»;
_ain.url = data;
_ain.postid = data;
_ain.maincontent = mainContentId;
_ain.title = data;
_ain.pubdate = data;
_ain.authors = data;
_ain.sections = data;
_ain.tags = data;
_ain.comments = «»;
_ain.track();
}

Этилмеркаптан

Этилмеркаптан — легколетучая жидкость, обладает сильным неприятным запахом, токсичен, действует на центральную нервную систему, вызывая судороги, паралич и смерть. Даже в ничтожных концентрациях его пары рефлекторно вызывают тошноту, головную боль из-за отвратительного запаха. Одним из продуктов его сгорания является сернистый газ, который не только ядовит, но и коррозионно активен

При одоризации газа персонал одоризационных установок должен быть тщательно проинструктирован и должен соблюдать особые меры предосторожности при работе с ним. Переливать жидкий этилмеркаптан необходимо закрытым способом.

Этилмеркаптан частично растворим в воде, хорошо растворим в спирте, эфире, бензоле, нефти и газовом конденсате. Этилмеркаптан хранится в герметично закрытых бочках в специальных складских помещениях или под навесом вне воздействия солнечных лучей.

Этилмеркаптан взаимодействует с железом и его окислами, образуя склонные к самовозгоранию меркаптиды железа. Установлены факты самовоспламенения пирофорных отложений при — 20 С. Эти отложения состоят в основном из сернистого железа. Медленное воздействие кислорода на пирофорные отложения приводит к постепенному их окислению с выделением элементарной серы, заполняющей поры и покрывающей отложения защитной пленкой.

Этилмеркаптан и более высокомолекулярные гомологи — жидкости, нерастворимые в воде.

Этилмеркаптан производят путем синтеза из этилового спирта и сероводорода: Ш8 С2ШОН — CiHsSH ШО.

Этилмеркаптан свинца, Pb ( SC2Hs) 2 — желтое соединение, плавящееся при 150 и растворимое в хлороформе и бензоле.

Определение этилмеркаптана и образовавшегося из диметил-дисульфида метилмеркаптана производят следующим образом. Из первого поглотительного прибора отбирают для анализа 1 и 5 мл, а из второго — полный объем пробы, доводят недостающий объем до 5 мл раствором ацетата ртути, вносят по 0 5 мл составного реактива и перемешивают.

Производство этилмеркаптанов из хлористого этила было проведено в широком масштабе. Этилмеркаптан применяется в качестве исходного продукта при синтезе сульфонала, весьма распространенного снотворного средства.

Запах этилмеркаптана ощущается при содержании 0 19 г ( 0 22 мл) в 1000 м3 воздуха. Расход жидкого одоранта следует принимать из расчета 1 л на 500 — 20 000 м3 воздуха или инертного газа.

Концентрация этилмеркаптана должна составлять 16 г на 1000 м3 природного газа.

Десорбция этилмеркаптана производится отдув ко и паром при кипячении ( аналогично процессу регенерации моноэтаноламина, см. главу IV) или каким-либо газом при нагревании. Регенерация может проводиться в насадочных аппаратах, однако керамические кольца не выдерживают условий процесса и быстро разрушаются.

Расход этилмеркаптана для одоризации топливного и пускового газа в среднем равен 16 г на 1000 м3 газа.

Поведение этилмеркаптана отлично от поведения высших тиолов. Так, при встряхивании этилмеркаптана с эквимолекулярным количеством ацетата ртути получается неполный меркаптид состава C2H5SHgCl вместо полного меркаптида R — S — Hg — S — R, образующегося в случае других меркаптанов. Формула и температура плавления совпадают с литературными данными. При реакции этилмеркаптана с большим избытком насыщенного раствора сулемы получается комплекс неполного меркацтида ртути С2Н5 — S — HgCl HgCh, что соответствует данным других авторов.

Синтез этилмеркаптана реакцией ацетилена с сероводородом при атмосферном давлении в среде ГМФТА.| Периодический синтез ДВС из ацетилена и сероводорода в 5-литровом реакторе.

Вынос этилмеркаптана в ловушку наблюдается только после полного превращения щелочи в гидросульфид щелочного металла, что доказано потенциометрическим титрование. По-видимому, здесь реализуется схема , представленная выше. Вероятно, этим и объясняется в данном случае его специфически ускоряющее воздействие на окислительно-восстановительные процессы.

definition — ЭТАНТИОЛ

of Wikipedia

   Advertizing ▼

Wikipedia

Этантиол

Материал из Википедии — свободной энциклопедии

Перейти к: ,

Этантиол
Ethanethiol.svg
Ethanethiol-3D-balls.png
Общие
Химическая формула С2H6S
Молярная масса 62,1 г/моль
Физические свойства
Состояние () твёрдое/жидкость/газ
Плотность 0,8617 г/см³
Примеси типичное кол-во
Термические свойства
Температура плавления -148 °C
Температура кипения 35 °C
Классификация
Рег. номер CAS 75-08-1
SMILES CCS

Этантиол, этилмеркаптан — органическое соединение, используемое как одорант для природного газа,сжиженного газа. Это летучий тиол, который находится в природе, как компонент нефти. Он малорастворим в воде, но хорошо растворим в большинстве органических растворителей. Был открыт доктором Максвеллом Буроу.

Это бесцветная жидкость с очень сильным отвратительным запахом, напоминающим запах тухлых яиц. Люди могут чувствовать запах этантиола при концентрациях одна часть на 50 миллионов частей воздуха.

Применение

Он добавляется в малых количествах (16 грамм на 1000 кубометров) к природному газу и пропану,(40г на тонну сжиженного газа) который используется для приготовления пищи и отопления, чтобы придать обычно не имеющим запаха газам легко распознаваемый запах, служащий предупреждением об опасной утечке газа. Этантиол также используется как начальное или промежуточное звено при производстве различных видов пластиков, инсектицидов и антиоксидантов.

Действие на организм

Этантиол токсичен, числится в списке сильнодействующих ядовитых веществ и в больших количествах может вызывать головную боль, тошноту и потерю координации, также он поражает почки и печень. Однако дозы полученные от вдыхания одорированного газа далеки от опасных.

Это незавершённая статья об органическом соединении. Вы можете помочь проекту, исправив и дополнив её.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *

Adblock
detector